

D R A G A N D J U R I C

N U M E R I C A L L I N E A R A L -
G E B R A F O R P R O G R A M -
M E R S [S A M P L E 1 . 0 . 0]

D R A G A N R O C K S

Please check other books from the Interactive Programming for Artifi-
cial Intelligence book series at https://aiprobook.com

This book is available at https://aiprobook.com/numerical-linear-algebra-for-programmers.
Subscribe to the Patreon campaign, at https://patreon.com/linear_al-
gebra, and get access to all available drafts of further versions, and a num-
ber of nice perks.

All proceeds go towards funding the author’s work on the Uncom-
plicate software libraries: Please check out https://uncomplicate.org
and https://github.com/uncomplicate.

Copyright © 2019-2021 Dragan Djuric

published by dragan rocks

https://aiprobook.com

Current version, 9 November 2021

https://aiprobook.com
https://aiprobook.com/numerical-linear-algebra-for-programmers
https://patreon.com/deep_learning
https://patreon.com/deep_learning
https://uncomplicate.org
https://github.com/uncomplicate

3

This book would not have been possible without your support. Thank you!
Stuart Halloway, Bobby Calderwood, Erich Oliphant, Nolan,

Kieran Owens, Carlton Schuyler, Jacob Rahme, (anon), Philip Cooper,
Forrest Galloway, Alex Lykostratis, Tobi Lehman, Eric Ihli, Chuck Cas-
sel, Alex Gian, Alan Thompson, ka yu Lai, Paul Boeschoten, Gurvesh Sanghera,
Dmitri, Mario Trost, Jacob Maine, Brian Abbott, michiakig, Stepan Parunashvili,
Richard Wofford, Andrew Dean, Pixel Pie, Anders Murphy, Frank El-
liott, Stephen Cagle, Chris Curtis, David Hoyt, Dwayne, Al King,
Timo Kauranen, and many others (list continues at the back of the book).

I would also like to thank Clojurists Together and Cognitect for sup-
porting my work on the Uncomplicate libraries with generous grants.

Contents

I Getting started 7

Introduction 9

Hello world 13

Vectors, matrices, and Neanderthal API 27

Polymorphic acceleration 45

II Linear algebra refresher 47

Vector spaces 51

Eigenvalues and eigenvectors 61

Matrix transformations 63

Linear transformations 65

III High performance matrix computations 67

6

Use matrices efficiently 69

Linear systems and factorization 71

Singular value decomposition (SVD) 73

Orthogonalization and least squares 75

IV In practice 77

GPU computing crash course 79

Generating random matrices 81

Broadcasting 83

Mean, variance, and correlation 85

Principal component analysis (PCA) 87

V Appendix 89

Setting up the environment and the JVM 91

Getting started

Figure 1: The LAFP book
1 https://clojure.org

Introduction

Writing the first sentence is often the hardest part. Not this time. Like-
wise, kick-starting the understanding of an unfamiliar topic might be
the steepest point in any programming journey. In hindsight, I’d love
that I had learned Lisp and functional programming earlier, because
now it seems so elegant and logical. But, something had to happen to
nudge me to notice what was, from this perspective, the right tool for me.
Clojure helped me leave the old ways behind, and embrace what was new.

Programming with linear algebra is somewhat similar in this re-
gard. You might be hearing about it, you probably even know the ba-
sics from your math education, but you simply can’t see how to use
it in daily programming. You might even have tried some software
libraries, but haven’t progressed beyond using them as fancy arrays.
This book will help you take that first step right away, and - if you
take it - be your companion in a path that leads quite far away.

This text is imperfect, but useful. However, it’s only the first version
and, like any good software, is going to be developed continuously.
I see a stream of improvements going far into the future, with mile-
stone versions 2, 3, etc. Rather than the first edition, it’s version one-
point-zero.

What?

Exactly what the title "Numerical Linear Algebra for Programmers:
An Interactive Tutorial with GPU, CUDA, OpenCL, MKL, Java, and
Clojure" (Figure 1) says.

This book is not a math book on linear algebra or numerical math-
ematics; there is no shortage of such books. This books concentrates
on how to learn enough linear algebra to apply it in everyday pro-
gramming practice, mainly in machine learning and high performance
computing. This means that this book is written for programmers,
rather than mathematicians.

Every single line of code in this book is written in Clojure1, a mod-
ern dialect of Lisp that compiles to Java bytecode and runs on Java Vir-
tual Machine (JVM). I assume that you’re already proficient in Clo-

https://clojure.org

10 numerical linear algebra for programmers [sample 1.0.0]

2 There is a free online book "Clojure
for the Brave and True" at https:
//brave-clojure.com, and if you
prefer a deeper text, https://clojure.
org/books is a good place to browse.

3 Short from Read Evaluate Print Loop.

4 You might expect that Clojure
REPL workflow is something like
you’ve seen in Python, Ruby, and
JavaScript ecosystems, but it’s not;
don’t skip this.

jure, but if you are not, the basics are fairly easy to learn2.
Since our programs will run on a broad choice of exotic hardware,

more notably GPUs, we’ll have to work with software platforms such
as OpenCL, or Nvidia’s CUDA, in addition to the Java platform. These
platforms are notoriously tricky to learn and use. Fortunately, I man-
aged to hide them under the hood. You’ll only need to learn to con-
trol them through Clojure, in a similar way you control the JVM. The
only programming language we’ll use is Clojure, and, yet, we get the
full speed and power of these platforms.

How?

The title suggests that this is An Interactive Tutorial. Rather than throw-
ing a pile of in-depth theory and specification at you, it assumes that
you have a proper math book with you, and shows you how each math
concept translates to code. Then, it shows you how these concepts are
implemented and applied in high-performance settings. Finally, we
look at how to implement several popular algorithms related to data
analysis, statistics, and machine learning. The first three parts of the book
should be read in order, since each chapter builds on what has been
learned earlier. The chapters in the fourth part are more self-contained.

Thanks to Clojure and its REPL3, this tutorial is interactive: as soon
as I show you a line of code, you can evaluate it, and see the result
immediately, even when the program is far from complete. There are
no restarts, debug statements, println, nor carpets of boilerplate code.

You start the Clojure’s JVM once, and work on the pieces of the pro-
gram while it is running all the time, including the code that runs on GPU.
If you’re already familiar with what I’m talking about, great; but if that’s
not the case, I strongly advise that you keep your mind open and look
around for demonstrations of Clojure’s REPL3 oriented programming.
I recommend using Emacs + CIDER, but there are other tools that you
might prefer. I don’t care, as long as you are using the REPL-oriented
process, rather than emulating interactive Python console4.

Why?

Simply, linear algebra can help solve many programming problems
with great elegance and performance. However, programmers, outside
of a few specialized areas, side step around it. Although they learned
some linear algebra in school, they usually didn’t go far with under-
standing how to apply it, and many had forgotten what they had learn.

https://brave-clojure.com
https://brave-clojure.com
https://clojure.org/books
https://clojure.org/books

introduction 11

5 I’ll give my recommendation in Part 2.

Figure 2: The DLFP book

When?

Wherever you are in your Clojure journey, you can start right now! In
that regard, the book is self-sufficient, when paired with a traditional
linear algebra math textbook.5 We start from very basic things without
assuming much about your math background, other than high school
math.

The Interactive Programming for Artificial Intelligence series

Fine - you might think - you’ll show me many nice examples, but can
I use this to create bigger, serious stuff? Do I intend to show elegant,
pure problems, and leave just before anyone asks how to create some-
thing of real substance? Good question, which I answer with more books!

Deep Learning for Programmers

"Deep Learning for Programmers: An Interactive Tutorial with CUDA,
OpenCL, DNNL, Java, and Clojure" (Figure 2) implements a full, super-
fast, deep learning library from scratch!

In short, you’re going to learn:

• the principles behind deep learning (and machine learning)

• only the necessary math and theory

• how to translate ML theory to code, step-by-step

• how to apply these techniques to implement neural networks from scratch

• how to implement other algorithms using vectors and matrices

• how to encapsulate these with elegant interfaces

• how to integrate with high-performance vendor libraries

• the nuts and bolts of a tensor-based deep learning library

• how to write simple, yet fast, number crunching software

• generally applicable high-performance programming techniques

Rather than being constrained to deep learning only, I hope that it
opens a real-world portal to high-performance scientific computing.

You can check the contents of the DLFP book, available at https:
//aiprobook.com/deep-learning-for-programmers/ and see whether
it could be a good fit for you (there’s a free sample).

https://aiprobook.com/deep-learning-for-programmers/
https://aiprobook.com/deep-learning-for-programmers/

12 numerical linear algebra for programmers [sample 1.0.0]

Figure 3: The Interactive Program-
ming Book (TIPB)

The Interactive Programming Book

This is the book that teaches the programming tools and the software
development process. Although it is not a machine learning book, it
teaches fundamental skills necessary for effective application of what
the other books teach. It also complements the books on Clojure, which
teach you the language itself, but not how to hold the pencil and how
to press it to the paper. Figure 3 shows the cover page that I have
already designed, but I’m yet to write it. Please check my blog https:

//dragan.rocks for news and updates. Once the first drafts are ready,
they’ll be available at https://aiprobook.com.

Other books!

And that is not all! Two books (DLFP and LAFP) are already here, at
version 1.0, one (TIPB) is in my mind, about to be started, but I plan
to write at least a few more. One book will teach GPU programming
that will cover CUDA and OpenCL. In DLFP and LAFP we only use GPU,
there we will learn how to write custom GPU programs. I expect that
to be fairly thin, 150-200 pages.

Yet another will be a from-basics-to-GPU tutorial about probability
and probabilistic data analysis. That’s a tricky subject, so it will take
some time, and may grow to be even thicker than DLFP. I hope that
I’ll be able to interest enough readers and subscribers so these two
books can see the light of day, too.

So, that’s 5 books in total planned so far. I’m looking forward
to see Clojure with such a strong covering of these tricky topics!

Beyond that, it’s too early to say, but who knows. . .

Let’s go

So, check out the Appendix if you need to set up the libraries that
we use in this book, take a look at the TOC to get a feel of what
we’re about to cover, and enjoy reading the first chapter without
further delay.

Please do not hesitate to share any thoughts publicly online (and
help spreading the word). I’m interested in both what’s good and
what should be improved. I’m learning from you, too!

https://dragan.rocks
https://dragan.rocks
https://aiprobook.com

6 When I say "simplified" i mean really
simplified. We’re using floats for prices
(bad), we store the data in global state,
the architecture is far from even a sim-
ple web application. But the model is fa-
miliar enough to a typical software de-
veloper.

Hello world

Motivation

As common with programming books, we’ll start with a Hello World
example right away. I won’t dwell much on the theory, here, or later
in the book – there are plenty of books that do that. I’ll try to guide you
through the applications, so you can discover yourself whatever can
make your programming life easier. Here’s the namespace definition
that we’ll use in this chapter. Let’s go!

(ns dragan.rocks.lafp.part-1.hello-world

(:require [uncomplicate.commons.core :refer [with-release]]

[uncomplicate.fluokitten.core :refer [foldmap]]

[uncomplicate.clojurecl.core :as opencl]

[uncomplicate.clojurecuda.core :as cuda]

[uncomplicate.neanderthal

[core :refer [dot copy asum copy! row mv mm rk axpy entry!

subvector trans mm! zero]]

[vect-math :refer [mul]]

[native :refer [dv dge fge]]

[cuda :refer [cuv cuge with-default-engine]]

[opencl :as cl :refer [clv]]

[random :refer [rand-uniform!]]]

[criterium.core :refer :all]))

Just an ordinary domain model

Imagine this simplified6 code for inventory modeling.

(def products {:banana {:price 1.3 :id :banana}

:mango {:price 2.0 :id :mango}

:pineapple {:price 1.9 :id :pineapple}

:pears {:price 1.8 :id :pears}})

This (imaginary) application exists to track sales. Our customer
puts the desired products into a cart, we calculate the total price,

14 numerical linear algebra for programmers [sample 1.0.0]

7 Yes, it’s super-simplified.
and, later, perform the delivery. Each cart only stores the products’
identifiers and quantities (in unspecified units7).

(def cart1 {:banana 10

:pineapple 7

:pears 3})

(def cart2 {:pineapple 3

:mango 9})

Having defined product and cart data, we write a function that,
given the products "database" and a cart, calculates the total price
of the products in the cart. The cart-price function reduces all
[product quantity] pairs in the cart, by retrieving the appropriate
product map in the product-db, and taking the value associated with
its :price key. It multiplies that price with the quantity, and accumu-
lates it in total.

(defn cart-price [product-db cart]

(reduce (fn [total [product quantity]]

(+ total (* (:price (product-db product)) quantity)))

0

cart))

Let’s call this function with the available carts, and see it in action.

(cart-price products cart1)

=> 31.699999999999996

(cart-price products cart2)

=> 23.7

We hopefully have more than one order. Our code can easily pro-
cess sequences of carts, and compute the total revenue.

(reduce + (map (partial cart-price products) [cart1 cart2]))

=> 55.39999999999999

It’s all good; but what does it have to do with linear algebra?

A more general algorithm

In the previous implementation, we entangled the specifics of data
storage and the algorithm that computes the total price. In this simple
model, it’s not much of a problem, but if the data model is more
complex, and the algorithm not as simple as the straightforward
map/reduce, this quickly leads to (at least) two problems:

hello world 15

8 Part 2 of the book is dedicated to
the relevant theory, and helps you con-
nect the theoretical founda-
tion to the code you need to in-
vent and develop.

9 More explanation comes right af-
ter this example.

10 There are other ways to multiply vec-
tors, which return non-scalar structures.

• code becomes too complicated

• program performance degrades quickly

Let’s first tackle the code complexity by extracting the computation
logic from the domain into the abstract mathematical notion of vec-
tors and operations on these vectors.8 In this particular example,
vectors help us encapsulate a bunch of numbers as one atomic unit.

(def product-prices [1.3 2.0 1.9 1.8])

(def cart-vec-1 [10 0 7 3])

(def cart-vec-2 [0 9 3 0])

We recognize that the logic we’ve already developed for computing
the total price matches a simple and well known mathematical opera-
tion, known as the dot product, a scalar product of two vectors.9

Figure 4: An informal block dia-
gram showing how dot product is com-
puted.

(defn dot-product-vec [xs ys]

(reduce + (map * xs ys)))

Given two vectors, [1 2 3] and [4 5 6], the dot product computes
one number, a scalar, that represent a scalar product of these two vec-
tors.10 Right now, we don’t even care about theoretical details of the dot
product; we recognize that it technically computes the same thing
that we need in our domain, and it seems useful.

(dot-product-vec [1 2 3] [4 5 6])

=> 32

We can see that, when applied to the vectors holding product prices
and quantities, it returns the correct results that we’ve already seen.

(dot-product-vec product-prices cart-vec-1)

=> 31.699999999999996

16 numerical linear algebra for programmers [sample 1.0.0]

(dot-product-vec product-prices cart-vec-2)

=> 23.7

Getting the total price requires another map/reduce, but we will
quickly see that this, too, can be generalized.

(reduce + (map (partial dot-product-vec product-prices)

[cart-vec-1 cart-vec-2]))

=> 55.39999999999999

A library of linear algebra operations

When we abstract away the specifics of the domain, we end up with
a number of general operations that can be reused over and over, and
combined into more complex, but still general, operations. Countless
such operations have been studied and theoretically developed by
various branches of mathematics and related applied disciplines for
a long time. What’s more, many have been implemented and opti-
mized for popular hardware and software ecosystems, so our main task
is to learn how to apply that vast resource to the specific domain prob-
lems.

Linear algebra is particularly well supported in implementations.
Whenever we need to process arrays of numbers, it is likely that at least
some part of this processing, if not all of it, can be described through
vector, matrix, or tensor operations.

Vectors

Instead of developing our own naive implementations, we should
reuse the well-defined data structures and functions provided by Ne-
anderthal.

Here we use vectors of double precision floating point numbers to
represent products’ prices and carts.

(def product-prices (dv [1.3 2.0 1.9 1.8]))

(def cart-vctr-1 (dv [10 0 7 3]))

(def cart-vctr-2 (dv [0 9 3 0]))

We use the general dot function in the same way as the matching
function that we had implemented before.

(dot product-prices cart-vctr-1)

=> 31.7

(dot product-prices cart-vctr-2)

=> 23.7

hello world 17

11 Most functions in this domain have
short names that might sound cryptic
until you get used to it. There is a
method to their naming, though, and
they are usually very descriptive
mnemonics. For example, mv stands for
Matrix-Vector multiplication. You’ll
guess that mm is Matrix-Matrix multipli-
cation and so on. Like in mathematical
formulas, this naming makes for code
that can be viewed in a contained place
that can be grasped in one view.

Matrices

Once we start applying general operations, we can see new ways to
improve our code, not so obvious at first.

Instead of maintaining sequences of vectors that represent carts,
and coding custom functions to process these vectors, we can put that
data into the rows of a matrix. All carts are now represented by one
matrix, and each row of the matrix represents one cart.

(def carts (dge 2 4))

=>

#RealGEMatrix[double, mxn:2x4, layout:column, offset:0]

p ↓ ↓ ↓ ↓ q
→ 0.00 0.00 0.00 0.00

→ 0.00 0.00 0.00 0.00

x y

We could have populated the matrix manually, but, since we al-
ready have the data loaded in appropriate vectors, we can copy it, show-
ing how these structures are related.

(copy! cart-vctr-1 (row carts 0))

=>

#RealBlockVector[double, n:4, offset: 0, stride:2]

[10.00 0.00 7.00 3.00]

(copy! cart-vctr-2 (row carts 1))

=>

#RealBlockVector[double, n:4, offset: 1, stride:2]

[0.00 9.00 3.00 0.00]

The following step is the usual opportunity for a novice to slip.
Should we now iterate the rows of our newly created matrix, calling
dot products on each row? No! We should recognize that the equiv-
alent operation already exists: matrix-vector multiplication, imple-
mented by the mv function!11

(mv carts product-prices)

=>

#RealBlockVector[double, n:2, offset: 0, stride:1]

[31.70 23.70]

(asum (mv carts product-prices))

=> 55.4

18 numerical linear algebra for programmers [sample 1.0.0]

12 These improvements materialize in
more serious examples. Any imple-
mentation of a small toy problem
works fast.

13 axpy

stands for "scalar a times x plus y".

Not only that the mv operation is equivalent to multiple calls to
dot, but it takes advantage of the structure of the matrix, and opti-
mizes the computation to the available hardware. This achieves much
better performance, which can compound to orders of magnitude in
improvements.12

. . . and more

Let’s introduce a bit more complication. Say that we want to sup-
port different discounts for each product, in the form of multipliers.
That gets us the price reductions, that we should subtract from the
price. An alternative way, shown in the following snippets is to sub-
tract the discount coefficients from 1.0 to get the direct multiplier
that gets us to the reduced price.

(def discounts (dv [0.07 0 0.33 0.25]))

(def ones (entry! (dv 4) 1))

We can subtract two vectors by the axpy function.13

(axpy -1 discounts ones)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.93 1.00 0.67 0.75]

The mul function multiplies its vector, matrix, or tensor arguments
element-wise, entry by entry.

(mul (axpy -1 discounts ones) product-prices)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[1.21 2.00 1.27 1.35]

The following code seamlessly incorporates this new part of the
algorithm into the implementation that we already have.

(asum (mv carts (mul (axpy -1 discounts ones) product-prices)))

=> 46.87

Why stop here? Suppose that we want to simulate the effects of
multiple discount combinations on the total price. As earlier, we put
all these hypothetical discount vectors into a matrix, in this case,
three samples that we’d like to investigate.

hello world 19

(def discount-mat (dge 4 3 [0.07 0 0.33 0.25

0.05 0.30 0 0.1

0 0 0.20 0.40]))

=>

#RealGEMatrix[double, mxn:4x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.07 0.05 0.00

→ 0.00 0.30 0.00

→ 0.33 0.00 0.20

→ 0.25 0.10 0.40

x y

We have to subtract these numbers from 1.0. Instead of populating
the matrix with 1.0, we will demonstrate the outer product operation,
implemented by the function rk. Given two vectors, it produces a ma-
trix that holds all combinations of the product of the entries of the vec-
tors.

(rk ones (subvector ones 0 3))

=>

#RealGEMatrix[double, mxn:4x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 1.00 1.00

→ 1.00 1.00 1.00

→ 1.00 1.00 1.00

→ 1.00 1.00 1.00

x y

We can also utilize rk to "lift" product prices vector to a matrix
whose shape matches the shape of the discount combinations matrix.

(def ones-3 (subvector ones 0 3))

(def discounted-prices (mul (axpy -1 discount-mat (rk ones ones-3))

(rk product-prices ones-3)))

The result is a matrix of hypothetical discount prices that we’d like
to simulate.

=>

#RealGEMatrix[double, mxn:4x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.21 1.23 1.30

→ 2.00 1.40 2.00

→ 1.27 1.90 1.52

→ 1.35 1.62 1.08

x y

20 numerical linear algebra for programmers [sample 1.0.0]

Now, the most interesting part: how do we calculate the totals from
this matrix and the matrix of carts we’ve produced earlier. (Not) sur-
prisingly, just a single operation, matrix multiplication, completes this task!

(mm carts discounted-prices)

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 25.05 30.51 26.88

→ 21.82 18.30 22.56

x y

Now we only need to sum the columns up to get the three final to-
tals. We won’t do this column-by-column. Instead, we’ll use the "mv
with ones" approach we’ve already encountered. Note that we need to trans-
pose the matrix to match the desired structure.

(trans (mm carts discounted-prices))

=>

#RealGEMatrix[double, mxn:3x2, layout:row, offset:0]

↓ ↓ q
→ 25.05 21.82

→ 30.51 18.30

→ 26.88 22.56

x y

And, the final answer is. . .

(mv (trans (mm carts discounted-prices)) (subvector ones 0 2))

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[46.87 48.81 49.44]

Given three (or three million) possible discount combinations, we get
a vector of the total revenue amounts. Of course, being a toy example,
this code doesn’t take into account that lower prices would (likely)
induce more sales; let’s not carry a Hello World example too far.

So, the first major benefit of using a library, such as Neanderthal,
based on many decades of numerical computing research and devel-
opment is that we have access to a large treasure trove of useful, well thought,
general functions for developing useful, general or customized, number pro-
cessing algorithms.

hello world 21

14 These measure-
ments use an old CPU from 2013, i7-
4790k.

Performance improvements

Another major improvement is performance. Although toy examples
may be implemented in any way you’d like, and they’d still work rea-
sonably well, real-world data processing almost always involves either
many data points, or many computation steps, or, often – both.

To show you that I’m not talking about a couple dozen percentages,
but improvements of many orders of magnitude, I’ll demonstrate
a few simple core operations. Note that these operations are only the
building blocks of your algorithm, so these improvements often com-
pound.

We start with the simplest case: dot product over two mildly large
vectors of 100k entries. First, we measure the running time of the
Clojure vector-based dot-product-vec.14

(def x-vec (vec (range 100000)))

(def y-vec (vec (range 100000)))

(with-progress-reporting (quick-bench (dot-product-vec x-vec y-vec)))

Execution time mean : 15.843749 ms

15 milliseconds doesn’t seem that much. After all, it’s faster than
a blink of an eye. Remember - you never need one dot product, but,
as in our Hello World demo, many of them.

Still staying in Clojure, we can improve this by manually looping,
and casting numbers from the Java’s Number into primitives. This
alone makes the code more complicated, but we reduced the running
time 7-fold.

(defn dot-product-loop [xs ys]

(loop [res 0.0

x (first xs) xs (next xs)

y (first ys) ys (next ys)]

(if (and x y)

(recur (+ res (* (double x) (double y)))

(first xs) (next xs)

(first ys) (next ys))

res)))

(with-progress-reporting (quick-bench (dot-product-loop x-vec y-vec)))

Execution time mean : 2.234458 ms

Similar speedup can be achieved using Fluokitten, Neanderthal’s
cousin library. Fluokitten is implemented in pure Clojure, so it cannot
go beyond Clojure speed, but it can reduce the complexity a lot.

22 numerical linear algebra for programmers [sample 1.0.0]

(with-progress-reporting (quick-bench (foldmap + 0.0 * x-vec y-vec)))

Execution time mean : 4.054223 ms

The next step is to delve into primitive Java arrays. The code is some-
what low-level, but the speed is much better since the data is arranged
in cache-friendly consecutive memory locations (most of the time). The
calculations are done with primitives, too.

(defn dot-product-arr ^double [^doubles xs ^doubles ys]

(let [n (alength xs)]

(loop [i 0 res 0.0]

(if (< i n)

(recur (inc i) (+ res (* (aget xs i) (aget ys i))))

res))))

(def x-arr (double-array (range 100000)))

(def y-arr (double-array (range 100000)))

(with-progress-reporting (quick-bench (dot-product-arr x-arr y-arr)))

Execution time mean : 79.123590 µs

This is great improvement! 200 times faster than the first snippet!
Even C code that one would write would not be faster, and it is likely
to even be slower, if you use only vanilla C.

How does Neanderthal fare?

(def x (dv (range 100000)))

(def y (copy x))

(with-progress-reporting (quick-bench (dot x y)))

Execution time mean : 8.574476 µs

This code is executed on 4 cores, and is an order of magnitude faster.
Of course, if executed on 1 core it would be only twice as fast. But, re-
member that dot is a very simple algorithm; there’s not much to
squeeze the difference from.

This is all the speedup that we can achieve on the CPU. Numerical
code should be a great match for a powerful GPU, right? The follow-
ing computation runs on Nvidia GTX-1080Ti.

(cuda/with-default

(with-default-engine

(with-release [gpu-x (cuv (range 100000))

gpu-y (cuv (range 100000))]

(with-progress-reporting (quick-bench (dot gpu-x gpu-y))))))

Execution time mean : 22.697660 µs

hello world 23

15 Adapted from Rosetta Code (real-
ize seqs with doall).

This is surprisingly slow! It is faster than pure Java, but not even
as fast as an old Intel processor! Is something wrong with Nvidia? Let’s
try AMD’s Vega 64 with an open source OpenCL engine.

(opencl/with-default

(cl/with-default-engine

(with-release [gpu-x (clv (range 100000))

gpu-y (copy gpu-x)]

(with-progress-reporting (quick-bench (dot gpu-x gpu-y))))))

Execution time mean : 74.070430 µs

It is roughly as fast as the Java implementation. Where’s the catch?
The catch is in the simplicity of the dot operation. GPU is a sort of
a nuclear aircraft carrier of computing. It does not pay to move it for
catching a bucket of shrimps. This is finely demonstrated with matrix
multiplication, which, although it can logically be implemented with three
simple nested loops, has quadratic complexity, and requires repeated
read/write pattern that stresses the cache.

The following implementation is adapted from Rosetta code.15

(defn matrix-mult-vec [a b]

(let [transpose (fn [s]

(doall (apply map vector s)))

nested-for (fn [f x y]

(doall (map (fn [a]

(doall (map (fn [b]

(f a b))

y)))

x)))]

(nested-for (fn [x y] (reduce + (map * x y)))

a

(transpose b))))

Here’s a demonstration of its functionality. Multiplying a matrix
by itself, we get another matrix of appropriate dimensions.

(def small-mat [[1 2 3 4]

[5 6 7 8]

[9 19 11 12]

[13 14 15 16]])

(matrix-mult-vec small-mat small-mat)

=>

((90 127 110 120)

https://rosettacode.org/wiki/Matrix_multiplication##Clojure

24 numerical linear algebra for programmers [sample 1.0.0]

16 If you wonder why we didn’t use
single precision in Clojure’s implemen-
tation, it’s because Clojure only sup-
ports double precision primitive num-
bers in functions.

(202 291 254 280)

(359 509 461 512)

(426 619 542 600))

This result is not interesting now. We want to see performance on
a modestly sized matrix first; let’s say 256× 256.

(def ma-vec (vec (take 256 (cycle [(take 256 (cycle [1 2 3 4]))]))))

(def mb-vec (vec (take 256 (cycle [(take 256 (cycle [4 3 2 1]))]))))

(with-progress-reporting (quick-bench (matrix-mult-vec ma-vec mb-vec)))

Execution time mean : 2.304788 sec

That’s more than 2 seconds!
We compare this with the equivalent matrix in Neanderthal. For

demonstration, we’ll also use single precision floats instead of dou-
ble precision floats, which, typically, increases the speed by 2×.16

(def a (rand-uniform! (fge 256 256)))

(def b (rand-uniform! (fge 256 256)))

(def c (fge 256 256))

(with-progress-reporting (quick-bench (mm a b)))

Execution time mean : 129.143314 µs

You see it well: 130 micro seconds! That’s 17692 times faster!
That’s not all. In most algorithm implementations, it is recom-

mended to use the destructive versions of the internal computa-
tions. By avoiding unnecessary memory allocations we consider-
ably speed the code up.

(with-progress-reporting (quick-bench (mm! 1 a b 0 c)))

Execution time mean : 105.646650 µs

This is 21904 times faster than what we started with! Although still
simple, this code should be able to show the advantage of GPU’s.

(cuda/with-default

(with-default-engine

(with-release [gpu-a (rand-uniform! (cuge 256 256))

gpu-b (rand-uniform! (cuge 256 256))

gpu-c (zero gpu-a)]

(with-progress-reporting

(quick-bench

(do (mm! 1.0 gpu-a gpu-b 0.0 gpu-c)

;;GPU calls are asynchronous, measure with finish!

(cuda/synchronize!)))))))

hello world 25

Execution time mean : 14.806265 µs

At last, GPU is at least order of magnitude faster than CPU, which
is the least we’d expect for the trouble of dealing with it, even consid-
ering that Neanderthal will automate almost all of that.

I should remind you that 256× 256 is not particularly impressive
size for a matrix. As a rule of thumb, the bigger the size, the more
advantage there is for the GPU. 8192× 8192? No problem for Nean-
derthal, and this is something that you’ll see in real use cases.

(cuda/with-default

(with-default-engine

(with-release [cpu-a (rand-uniform! (fge 8192 8192))

cpu-b (rand-uniform! (fge 8192 8192))

cpu-c (zero cpu-a)

gpu-a (rand-uniform! (cuge 8192 8192))

gpu-b (rand-uniform! (cuge 8192 8192))

gpu-c (zero gpu-a)]

(time (mm! 1.0 cpu-a cpu-b 0.0 cpu-c))

(with-progress-reporting

(quick-bench

(do (mm! 1.0 gpu-a gpu-b 0.0 gpu-c)

;;GPU calls are asynchronous, measure with finish!

(cuda/synchronize!)))))))

CPU: "Elapsed time: 2864.339836 msecs"

GPU: "Execution time mean : 112.954961 ms"

One monster against the other; they’re both unbelievably fast,
but now one is 25 times faster. I recommend that you try this with
any Clojure/Java library to just appreciate what we got. I’d do that,
but I’m afraid that I’d have to delay the book, waiting for such compu-
tation to complete.

At the end of this introduction, I invite you to think about what even
a 100 or 1000 times improvement in speed mean. Of course, we rarely
care whether the complete computation is 1 microsecond or 1 millisec-
ond – both complete before we even notice that they started. But, for
the building blocks, that are part of a much larger program, that means
that, instead of 1000 minutes we get results in 1 minute. And, 1000

minutes is. . . almost 17 hours.
Our algorithm can be even more complex. Let’s say it takes 2 hours.

If a less optimized algorithm is just 100 times slower (which is likely)
it would take 200 hours - more than a whole week!

17 If you’re interested in n-dimensional
arrays, aka tensors, please see the Deep
Diamond library and the Deep Learn-
ing for Programmers book.

18 I do that because it’s how most pro-
grammers would view vectors and ma-
trices at first, but it’s a wrong and con-
straining way to think about these con-
cepts in general.

Vectors, matrices, and Neanderthal API

Neanderthal’s goal is to provide fast and simple tools for computation-
ally demanding problems in Clojure. That alone can mean anything
and everything, so I’ll narrow it by being more tech-specific. Nean-
derthal primarily concentrates around arrays, vectors, and matrices.
It aims at providing efficient structures that represent these concepts
on modern hardware, and efficient operations to transform them. Presently,
that usually means using raw primitive arrays, and integrating with raw
native libraries provided by hardware vendors.

We could use Clojure’s pure structures to represent vectors, matri-
ces, and tensors, and we could implement practically any operation
in pure Clojure, on the JVM. The resulting functions would probably
be nice and elegant. The trouble is that they would not be practical
at all, and would have awfull performance beyond toy programs.
The real world is ugly. The only way to get acceptable performance
is to closely tailor such data structures and algorithms to specific hard-
ware. It’s complex and expensive, so the best solutions are usually
provided by hardware vendors themselves.

Since we have to use these dirty and complex native programs, could
we at least aim to hide their complexity behind a nice Clojure API?
Absolutely! This chapter gives a high level overview of how Nean-
derthal does it.

Creation

To compute anything, we first have to provide data. Neanderthal works
with various kinds of vectors and matrices17. The next part of the book
covers the proper mathematical theory that will help you understand
what vectors and matrices are. In this part, we’ll look at them in a crude
mechanistic manner and say that vectors are a sort of one dimensional
arrays, while matrices can be two dimensional arrays, if we squint18.

Since Neanderthal’s function are polymorphic, the type of a object
implicitly controls which underlying engine, ie. implementation, will
perform the computation. The most important characteristic of an ob-
ject, besides its logical type (one of available vector or matrix types) is

28 numerical linear algebra for programmers [sample 1.0.0]

the memory where it resides. The default, and the most accessible,
is the main memory that the CPU uses transparently, without much
effort by the programmer. Additionally, we might want to store our
objects and run computations on the GPUs and other accelerators
attached to our computer. This requires more knob twiddling, most
of which Neanderthal does under the hood for us, that we have to
be aware of.

Core constructor functions

The uncomplicate.neanderthal.core package contains technology-
agnostic constructor functions. The name of the function determines
the kind of structure to be created: vector, general matrix, symmetric
matrix, triangular matrix, packed matrix, etc. These functions do, of
course, create concrete, technology-specific objects, but that is not ex-
plicitly configured. The underlying technology is defined by the fact

argument, standing for factory provider, which polymorphically dele-
gates the call to the proper technology specific implementation. In the
remaining of that object’s life, the polymorphic calls to actual opera-
tions will be transparently directed to the proper engine.

Take the simplest structure, dense vector, and its constructor, vctr,
for example.

We can try to create a dense vector with nothing more than a few num-
bers.

(vctr 1 2 3)

=> No implementation of method: :factory of protocol: #’uncomplicate.neanderthal.internal.api/FactoryProvider found for class: java.lang.Long

Unfortunately, this information is not enough. A number, plain
Integer in this case, does not implement the FactoryProvider proto-
col. We could have configured the default engine, which could de-
cide from the information we have that we would like to create a
primitive vector of int in the main memory, but that assumption
is often incorrect; in these types of applications, we usually use
floating point. OK, then, why the default is not a floating point?
It could be, but then we would still miss the information about preci-
sion (double, float, half, etc.), and the memory space (main memory,
or memory attached to a device). Such default would also make it dif-
ficult to distinguish the desired role for the first argument: factory
provider, or initial content. It would make the API more confusing
than necessary, as in the following examples.

(vctr [1 2 3])

=> Wrong number of args (1) passed to: uncomplicate.neanderthal.core/vctr

vectors, matrices, and neanderthal api 29

19 Naturally, to the level that the JVM and
the backing low-level library allow, and
the context in which these structures
are typically used.

(vctr [1 2 3] [1 2 3])

=> No implementation of method: :factory of protocol: #’uncomplicate.neanderthal.internal.api/FactoryProvider

found for class: clojure.lang.PersistentVector

So, the simple rule is that the first argument for a constructor func-
tion should be an object that implements the FactoryProvider proto-
col. The remaining arguments can provide object dimensions, and/or ini-
tial contents. Creating a vector of single-precision floats with dimen-
sion 3, (1, 2, 3), in main memory, is straightforward.

(vctr native-float [1 2 3])

=>

#RealBlockVector[float, n:3, offset: 0, stride:1]

[1.00 2.00 3.00]

Neanderthal provides factories for typical primitive numeric types
that Java and Clojure support, fully, partially, or "kind of".19

(vctr native-double [1 2 3])

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[1.00 2.00 3.00]

Operations on single and double precision floating point numbers
are typically supported in all underlying performance libraries, while
the support for other floating point types, such as half-precision floats,
depends on the hardware. Integers are usually used for indexing, and
aren’t available for most computation operations.

(vctr native-int [1 2 3])

=> #IntegerBlockVector[int, n:3, offset: 0, stride:1](1 2 3)

If you wondered about why the contents of this structure is printed
differently than in the past few examples, it’s because printing floating
point numbers is tricky with different scales and precision, while
integers are straightforward, and we can simply print out their Clojure
literal representation. For floats, Neanderthal supports the scientific
notation, and prints only two significant decimals, since the printout
serves primarily to get the feel of the overall data in the REPL anyway,
not to inspect each of potentially millions of data points.

(def fx (vctr native-float [10000000000000 2 3]))

=>

#RealBlockVector[float, n:3, offset: 0, stride:1]

[1.00E+132.0 3.0]

30 numerical linear algebra for programmers [sample 1.0.0]

The factory provider doesn’t have to be the actual factory; it can
be any of the Neanderthal structures. We would typically want to write
code that would work on any platform (CPU, GPU, etc.), and would not
provide a concrete factory, such as native-float upfront, but would
probably receive it as an argument. However, passing that argument
around is not always the most practical way to get a reference to a
factory. What if we can already determine the factory from another
argument? Almost all functions will work on some vectors and matri-
ces that they receive as arguments, so we could use these as factory
providers.

The fx vector that we have just created can be used as a sapling
for creating other objects supported by the same backend technology.

(def x (vctr fx [1 2 3 4]))

=>

#RealBlockVector[float, n:4, offset: 0, stride:1]

[1.00 2.00 3.00 4.00]

Constructor functions can recognize a wide range of structures that
as data source. Clojure sequences, arrays, other vectors or matrices,
and even varargs are supported.

(vctr x 1 2 3 4 5 6)

=>

#RealBlockVector[float, n:6, offset: 0, stride:1]

[1.00 2.00 3.00 5.00 6.00]

We don’t have to provide source data each time we create a vector;
providing the dimension is enough to create a zero vector.

(vctr x 3)

=>

#RealBlockVector[float, n:3, offset: 0, stride:1]

[0.00 0.00 0.00]

Constructors that create more complex structures typically require
that we provided dimensions.

(ge x 2 3)

=>

#RealGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 0.00 0.00

→ 0.00 0.00 0.00

x y

vectors, matrices, and neanderthal api 31

Of course, we are able to load the structure from a data source at
the time of creation.

(ge x 2 3 [1 2 3 4 5 6 7 8])

=>

#RealGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 3.00 5.00

→ 2.00 4.00 6.00

x y

Although Neanderthal tries to figure out as much information from
the context, sometimes the context doesn’t provide enough informa-
tion. In the following example, we try to create a dense matrix from a
vector, but we can’t extract any meaningful dimension other than the
trivial n× 1, so Neanderthal complains that it’s probably not a very
useful thing to do.

(ge x x)

=>

Execution error (ExceptionInfo) at uncomplicate.commons.utils/dragan-says-ex (utils.clj:105).

Dragan says: This is not a valid source for matrices.

On the other hand, we can create a matrix from a matrix.

(ge x a)

=>

#RealGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 3.00 5.00

→ 2.00 4.00 6.00

x y

Native objects (CPU)

Sometimes you don’t want to write functions that support all back-
ends. Perhaps you know that the specific functionality works only on
specific hardware, such as the CPU, or you’re exploring the problem
in the REPL, and you want the code to run without any configuration.

Since all operations in the core namespace are polymorphic, it’s
enough to provide platform-specific constructors, which, for the MKL
engine that runs on the CPU and uses the main memory, can be found in
the uncomplicate.neanderthal.native namespace. For each construc-
tor from the core namespace, there is a function in the native names-
pace, prefixed with the type of entries: d for double, f for float, l for
long, i for int, s for short, b for byte.

32 numerical linear algebra for programmers [sample 1.0.0]

For example, the dge function creates a double dense (general)
matrix in main memory, and all subsequent calls are going to be
computed by the native CPU engine, which is backed by MKL.

(dge 2 3)

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 0.00 0.00

→ 0.00 0.00 0.00

x y

OpenCL (CPU & GPU) objects

GPU backends are a bit more complex, because we need to supply the
context and execution queue that will be used in computations. This
diminishes the usefulness of removing the factory parameter, which
handles the context and queue internally. This is solved by handling
the factory as a dynamically bound *opencl-factory*.

Instead of type-specific functions, such as dge, or fge, the uncomplicate.neanderthal.opencl

namespace provides functions prefixed by cl, such as clv (OpenCL
vector) and clge (OpenCL general matrix). The following example cre-
ates an OpenCL matrix in the default computation context on the de-
fault OpenCL device (which is a GPU on my machine, but might be a
CPU on your system).

(clojurecl/set-default-1!)

(cl/set-engine!)

In this example, we set the root binding to the default factory.
Until we release these bindings, we can interactively experiment with
OpenCL code, even if it’s on GPU, which would typically require much
more boilerplate.

(def gpu-a (clge 2 3 (range 7)))

=>

#CLGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

Don’t forget to release the context at the end. It releases all re-
sources related to that context, including the backends. Please note that
this is unrelated to the actual objects in the JVM, which might still ex-
ist. This releases the resources on the device.

vectors, matrices, and neanderthal api 33

20 Constructors from the core

namespace are the recom-
mended way in most code, though.

(clojurecl/release-context!)

CUDA (Nvidia GPU) objects

Nvidia’s CUDA works in a similar way: we provide the context and
engine as a dynamic binding, create CUDA-specific vectors and matri-
ces, and use normal Neanderthal functions transparently to the tech-
nology. In the following example, we use the with-* macros (also avail-
able for OpenCL) that take care of the lifecycle of all relevant objects
automatically.20

(clojurecuda/with-default

(with-default-engine

(with-release [gpu-a (cuge 2 3 (range 7))]

(asum gpu-a))))

=> 15.0

Moving data around

If we’d like to do useful things with vectors or matrices, by calling
appropriate operations that transform data, we need to have some ini-
tial data to begin with. Since the object is usually full of zeroes at the
time of creation, the next task is usually to move some numbers to that
object.

Copying

The most efficient way to move data between two Neanderthal objects
is copying, which is the preferred operation when these objects have
the same structure, reside in the same memory space, on the same de-
vice. In that case, we should always use the copy! function, or its pure
equivalet copy when we want to copy to a new object.

(def x-copy (copy x))

=>

#RealBlockVector[float, n:4, offset: 0, stride:1]

[1.00 2.00 3.00 4.00]

Suppose we now change x-copy, and would like to move the final
numbers back to x. The source and the destination already exist, and
we use the destructive copy! function.

(scal! 2.0 x-copy)

(copy! x-copy x)

x

34 numerical linear algebra for programmers [sample 1.0.0]

=>

#RealBlockVector[float, n:4, offset: 0, stride:1]

[2.00 4.00 6.00 8.00]

Please note that the JVM is rather slow at allocating native buffers
on the heap. We should strive to re-use objects and prefer destructive
functions, suffixed by "!", whenever possible. This is especially impor-
tant to keep in mind when we deal with temporary local objects that
store intermediate results that are only used in the local scope of a few
functions that implement the particular algorithm.

The copy! function requires matching objects. For example, it will
refuse to copy a vector of insufficient length.

(def x-small (vctr x [100 200]))

(copy! x-small x)

=>

Execution error (ExceptionInfo)

Dragan says: You cannot copy data of incompatible or ill-fitting structures.

Neanderthal does support this use case. Copy to/from a matching
subvector, which refers to the appropriate chunk of memory of the
original object.

(copy! x-small (subvector x 0 2))

x

=>

#RealBlockVector[float, n:4, offset: 0, stride:1]

[100.00 200.00 6.00 8.00]

The arguments to copying functions do not have to be dense. Both
copy and copy! support sparse vector and matrix structures, regard-
less of whether they originate from an explicit constructor, or refer to
a smaller part of the contents of a larger object. For example, a row
or a column of a matrix may have a stride, and we can copy it to
a densely packed vector.

Transferring

A more general and versatile way of moving data around is the transfer!

method. It does not require that the source and destination data struc-
tures match, that they reside in the same memory space, that the en-
tries are of the same type, nor that there is enough entries in the source
to fill the destination. It will simply try to fit the data that you provide
into the destination, if it can find a viable path. It supports plain Clo-
jure data structures, and can be extended to any source and destina-
tion combination that you want to support yourself!

vectors, matrices, and neanderthal api 35

(transfer! [-4 -5] x)

=>

#RealBlockVector[float, n:4, offset: 0, stride:1]

[-4.00 -5.00 6.00 8.00]

(seq (transfer! x (double-array 8)))

=> (-4.0 -5.0 6.0 8.0 0.0 0.0 0.0 0.0)

Transferring a strided row of a double matrix from the main mem-
ory to a symmetric matrix of single precision floats on the GPU would
be an example of a more complex operation. It works out of the box,
but we should check whether it chooses the fastest path underneath.

(clojurecuda/with-default

(with-default-engine

(with-release [b-cuda (cusy 3)]

(println b-cuda))))

=>

#CUUploMatrix[float, type:sy, mxn:3x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 * *
→ 0.00 0.00 *
→ 0.00 0.00 0.00

x y

If transfer! is so useful, why bother with the nagging copy! at all?
Its advantages become disadvantages when we want to be sure that our
code works as fast as possible, with minimal resources.

When we copy a float matrix to a matching float matrix, we don’t use
any addittional workspace, and the operation is executed by one call
to a highly optimized native function on the device where the memory
is physically located. That operation is usually optimal.

Copying is still quite fast, and does not require intermediate steps
when the data is compatible, but there is no single native operation
that we need. In these cases, Neanderthal transparently calls a more
fine-grained operation multiple times to copy the appropriate parts
of the structures one by one.

Copying only succeeds if a fast and lean operation is possible to
do what we require. Otherwise, we get an exception, and we have to
decide what we’ll do instead, which might be to request a transfer.

The transfer! method will delegate to copy! when appropriate,
but if that is not possible, it will silently find a workaround, which
might include multiple intermediate steps and storage objects. Addi-
tionally, the operation may be implemented with Clojure functions,
and not optimized native operations.

36 numerical linear algebra for programmers [sample 1.0.0]

21 At least not too much, most of the time.

The bottom line is that we should prefer to explicitly use copy!,
and only use transfer! at the boundaries, when there is no explicit
path that we can think of. Please do not underestimate the value of
copy’s refusal to perform your request; often it is a plea to make
our idea less complicated, which is achievable more often that we
think at first!

Lifecycle

Clojure and Java programmers usually don’t have to explicitly care
about the lifecycle of the objects they use. We create our sequences and
hash maps liberally, our functions do that even more in the course of their
normal operation, Java garbage collector takes care of cleaning them up
when appropriate, and we are happy. We also become careless. We of-
ten forget that the resources that we use (files, threads, etc.) are not
automatically cleaned up. It’s the same with memory outside the total
control of the JVM, especially the memory on the GPU.

The memory that Neanderthal uses is a precious resource. Direct
buffer allocation is expensive and slow. Don’t do it. I mean, of course
you have to do it, but only when it’s necessary. Prefer re-using existing
objects whenever possible. I admit, that is not the most elegant solution,
but it’s critical to be pragmatic in this case.

When you finish working with an object, don’t litter. The garbage
collector can’t clean the objects that control the GPU memory, and even
if the object is in the main memory, GC doesn’t know how large the mem-
ory buffer is, so it might not it realease as soon as you hope. If there is
an area where we should be overzealous, this is the one.

Releaseable

There are two parts of every Neanderthal vector or matrix: normal
Clojure (Java) objects that we use directly, and the raw memory buffer
that they control. The Clojure part is managed by the GC, so we don’t
have to worry21 about its lifecycle; the raw memory is outside the JVM’s
control, and we can’t rely on GC.

If we don’t do anything about releasing these outside resources,
the GC will eventually release the Clojure managing object, while the
raw buffer will stay allocated. If we’re just experimenting in the REPL,
we might not even notice that leak. In a long running process in pro-
duction, such approach would lead to disaster.

The approach to releasing these outside resources is similar to how
we treat files in Java: although the File object is managed by the GC,
we still have to explicitly call the close method. Uncomplicate li-
braries provide the Viewable protocol, its explicit release method, and

vectors, matrices, and neanderthal api 37

the with-release and let-release macros that help with automation.
It’s time for a simple demonstration in the REPL. Here’s a tiny vec-

tor.

(def x10 (dv 1 2 3))

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[1.00 2.00 3.00]

We call an operation, the data is in its place, and we get our answer.

(asum x10)

=> 6.0

Then, we decide that we don’t need the data any more, and we re-
member that we should take care of the underlying direct buffer, so we
release the vector.

(release x10)

x10

Note how, although the Clojure managing object still exist, the
contents randomly changed. The third entry is there, but the first
two are suspiciously set to zero.

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[0.00 0.00 3.00]

This is an implementation detail of the CPU backend; the contents
of small vectors could have even remained unchanged, for a time, un-
til the OS finds a better use for it. But it might change right away, with,
from the context of our application, pure garbage of numbers without
any meaning.

Fortunately, most of the time we don’t have to call release explic-
itly! If we need the vector only in some well-defined scope, then we can
use with-release, just like in the following snippet.

(with-release [x20 (dv 1 2 3)]

(asum x20))

=> 6.0

An interesting implementation detail: the JVM will de-allocate
the raw byte buffer even if we don’t release it! The problem is that
it does not know how large the buffer is, so it treats every vector,

38 numerical linear algebra for programmers [sample 1.0.0]

even a gigabyte size one, as a small object, whose de-allocation is
not urgent. On the CPU, thus, release is a huge help.

On the GPU, however, explicit release is necessary, since the
allocated memory will be reserved until we de-allocate it explicitly,
or its context has been de-allocated. Consequently, the memory leaks
are more severe.

(clojurecuda/with-default

(with-default-engine

(let [x10-cuda (cuv 1 2 3)]

(asum x10-cuda)

(release x10-cuda)

(asum x10-cuda))))

=> Execution error (NullPointerException) at jcuda.jcublas.JCublas2/cublasSasumNative (JCublas2.java:-2).

Parameter ’x’ is null for cublasSasum

Note that we got a NPE. That might look severe, but it’s actually
good. This is due to the protection provided by ClojureCUDA. CUDA
code in C++ or Java that would try to use a previously destroyed
object would lead to a crash of the process! In Clojure, we only get
a reminder that, although the controlling object is still in scope, the
controlled memory is not available any more. Our REPL session is
uninterrupted!

In most situations we don’t need to explicitly release objects;
the with-release and let-release are preferred in most situations.
with-release is a let like binding that releases the bound objects
at the end.

(clojurecuda/with-default

(with-default-engine

(with-release [x20-cuda (cuv 1 2 3)]

(asum x20-cuda))))

=> 6.0

The lifecycle management in a well-defined scope is fairly simple;
the problems arise when we have to keep an object around for a longer
time. The first challenge is to make sure that the underlying buffer
of a partially created object is released when an exception breaks the
normal flow. This is the task of let-release, which releases its bind-
ings only if an exception occurs in its scope.

(defn produce-a-vector [source]

(let-release [result (vctr source 2)]

(entry! result 0 (iamax source))

vectors, matrices, and neanderthal api 39

(entry! result 1 (amax source))

result))

(def x30 (dv (range 10)))

(produce-a-vector x30)

=>

#RealBlockVector[double, n:2, offset: 0, stride:1]

[9.00 9.00]

(release *1)

Typically, you’ll use with-release for workspace objects that
should only exist in a limited scope, and let-release when you
create new objects that should be returned from a scope as the final
result of some computation. The explicit release function is mostly
used in lower-level engines; for example, see how release is used
in Deep Diamond’s and Neanderthal’s engines.

Views

There are two main use cases for viewing a structure in another light.
Often we would like to treat a vector as a matrix, or a matrix as a
vector. Both structures will work with the same data, and both will
see the changes immediately. Another case is when we have to for-
ward some objects further, but we can’t trust that the client code will
know whether to release it or not. Then, we can forward the view to
the client - releasing a view is a no-op - and manage the lifecycle
of the master object in the main flow.

This is the main object.

(def a40 (dge 2 3 (range 10)))

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

The structure returned by the view function looks and works in
exactly the same way.

(def a40-view (view a40))

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q

40 numerical linear algebra for programmers [sample 1.0.0]

→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

Changing the view changes the main object.

(scal! 100.0 a40-view)

a40-view

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 200.00 400.00

→ 100.00 300.00 500.00

x y

a40

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 200.00 400.00

→ 100.00 300.00 500.00

x y

The same principle holds for sub-parts. In this example, we are
changing the view of the first row of the matrix.

(scal! 0.01 (view (row a40-view 1)))

a40

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 200.00 400.00

→ 1.00 3.00 5.00

x y

We demonstrate the effects of releasing the view and master objects
on the GPU, since, as we mentioned earlier, the data on the CPU might
not be overwritten for a while even after being released.

(clojurecl/set-default-1!)

(cl/set-engine!)

(def gpu-a40 (clge 2 3 (range 7)))

gpu-a40

vectors, matrices, and neanderthal api 41

=>

#CLGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

We release a view on the GPU, but gpu-a40 is unaffected.

(release (view gpu-a40))

gpu-a40

=>

#CLGEMatrix[float, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

However, when we release gpu-a40, the data becomes unavailable,
even though the managing object is still in scope.

(release gpu-a40)

gpu-a40

=> #CLGEMatrix[float, mxn:2x3, layout:column, offset:0]

If we tried to call a computation on a released structure, Nean-
derthal will complain.

(asum gpu-a40)

=>

Execution error (NullPointerException) at org.jocl.blast.CLBlast/CLBlastSasumNative (CLBlast.java:-2).

Parameter ’x_buffer’ is null for CLBlastSasum

When we need to look at the data from another angle, we might want
to switch between vector and matrix view, including the various spe-
cial matrix formats that we will discuss in a minute. Each of these struc-
tures has a view-<suffix> function. For example, we can view a ma-
trix as if it was a vector with the help of the view-vctr function.

(view-vctr a40)

=>

#RealBlockVector[double, n:6, offset: 0, stride:1]

[0.00 1.00 2.00 4.00 5.00]

This works on the GPU, too.

42 numerical linear algebra for programmers [sample 1.0.0]

(view-vctr gpu-a40)

=>

#CLBlockVector[float, n:6, offset:0 stride:1]

[0.00 1.00 2.00 4.00 5.00]

These views are capable of producing further views. In the follow-
ing example, ve look at a matrix as a vector, and then we look at that
vector view as a matrix.

(view-ge (view-vctr gpu-a40))

=>

#CLGEMatrix[float, mxn:6x1, layout:column, offset:0]

p ↓ q
→ 0.00

→ 1.00

→ ∵
→ 4.00

→ 5.00

x y

Note that the shape of these two matrices is not the same, as some
information about the structure was lost in the process. All view-*
functions support additional dimension parameters when it makes sense,
so we could specify these details.

We won’t use this OpenCL engine for the remaining of this chapter,
so we can clean everything up by releasing the context itself.

(clojurecl/release-context!)

Specific matrix structures

Most of the time, our needs will be best served by general dense ma-
trices (GE). In some cases, though, we know, by employing theoretical
knowledge, that the matrix we’re working with, has a special structure
for which there are special, optimized algorithms. In most of these cases,
GE matrices might be the simplest, and might work well enough, but we
have the option to fit the solution to the problem even better, with a bit
extra specificity and involvement, if we wish so.

Most of the operations are polymorphic; Neanderthal automatically
executes the right implementation, but the specialization has to be
specified somewhere. Most often, it’s at the time of construction
or view taking.

For example, by calling the tr function, we create a triangular ma-
trix, which assumes zero on one side of the diagonal. Since triangular
matrices are quadratic, tr appropriately asks for just one dimension.

vectors, matrices, and neanderthal api 43

(tr x 3 (range 1 7))

=>

#RealUploMatrix[float, type:tr, mxn:3x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 * *
→ 2.00 4.00 *
→ 3.00 5.00 6.00

x y

TR matrices use the same logically rectangular area as GE matrices.
They just ignore the positions that don’t belong to them, printed out
as "*". If we want to save space, we might use triangular packed matri-
ces, created by tp.

(tp x 3 (range 6))

=>

#RealPackedMatrix[float, type:tp, mxn:3x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 . .

→ 2.00 4.00 .

→ 3.00 5.00 6.00

x y

Note the "." instead "*" in the printout. It indicates that this entry
logically exists, and is 0, but physically doesn’t use any memory. The
difference between TR and TP matrices can be easily understood if we
look at their vector views.

(seq (view-vctr (tr x 3 (range 1 7))))

=>

(1.0 2.0 3.0 0.0 4.0 5.0 0.0 0.0 6.0)

(seq (view-vctr (tp x 3 (range 1 7))))

=>

(1.0 2.0 3.0 4.0 5.0 6.0)

Please note that, while packed matrices save half of the storage
space, the algorithms for general matrices are more developed and
performant.

Symmetric matrices have a similar triangular structure, but in-
stead of assuming zeres for entries it does not control, it assumes the
"mirror image" of entries opposite the diagonal.

(sy x 3 (range 1 6))

44 numerical linear algebra for programmers [sample 1.0.0]

=>

#RealUploMatrix[float, type:sy, mxn:3x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 * *
→ 2.00 4.00 *
→ 3.00 5.00 0.00

x y

Packed symmetric matrices are available, too.

(sp x 3 (range 1 7))

=>

#RealPackedMatrix[float, type:sp, mxn:3x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 1.00 . .

→ 2.00 4.00 .

→ 3.00 5.00 6.00

x y

There’s more specific structures, which we might touch later in
the book, that you can find in the core namespace, such as banded
matrices (GB), their triangular (TB) and symmetric (SB) variants,
various flavors of diagonal matrices, and other structures that are
supported by BLAS and similar standards.

(sb x 8 1 (range 1 100))

=>

#RealBandedMatrix[float, type:sb, mxn:8x8, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓
↘ 1.00 3.00 5.00 7.00 9.00

↘ 2.00 4.00 6.00 8.00 10.00

x y

Note the arrows in the printout. They remind you that these
entries, which are printed out vertically, are logically diagonally
spaced, since banded matrices only have non-zero entries in a short
band around the diagonal (in this case, the main diagonal and one
sub-diagonal).

View switching is pretty versatile, where it makes sense.

(view-vctr (view-tr (view-ge (sy x 3 (range 1 6)))))

=>

#RealBlockVector[float, n:9, offset: 0, stride:1]

[1.00 2.00 3.00 0.00 0.00]

Polymorphic acceleration

Linear algebra refresher

49

22 We use the 7th edition as a reference.

If you are at least a bit like me, you had learned (some) linear
algebra during your university days, had done well at those math
courses playing the human calculator role, multiplying matrices with
nothing but pen and paper, but then buried these experiences deep
down in your brain during those many years at typical programming
tasks (that are not famous for using much linear algebra).

Now, you want to do some machine learning, or deep learning,
or simply some random number crunching, and intuition takes you
a long way, but not far enough: as soon as you hit more serious
tasks, beyond the cats and dogs deep learning tutorials, there are
things such as eigenvalues, or LU factorization, or whatever-the-hell-
that-was. You can follow the math formulas, especially when some-
one else have already implemented them in software, but not ev-
erything is clear, and sooner or later you are the one that needs
to make working software out of that cryptic formula involving
matrices.

In other words, you are not completely illiterate when it comes
to maths, but you can not really work out this proof or that out
of the blue; your math-fu is way below your programming-fu. Fortu-
nately, you are a good programmer, and do not need much hand hold-
ing when it comes to programming. You just need some dots connect-
ing what you read in the math textbooks and the functions in a power-
ful linear algebra library.

This part briefly skims through a good engineering textbook on lin-
ear algebra, making notes that help you relate that material to Clojure
code. I like the following book: Linear Algebra With Applications, Al-
ternate Edition by Gareth Williams22. The reasons I chose this book are:

• It is oriented towards applications.

• It is a nice hardcover, that can be purchased cheaply second-hand.

• The alternate edition starts with 100 pages of matrix applica-
tions before diving into more abstract theory; good for engineers!

Any decent linear algebra textbook will cover the same topics,
but not necessarily in the same order, or with the same grouping.
This part covers chapter starting with chapter 4 from the book that
I recommended. A typical (non-alternate) textbook will have this
chapter as a starting chapter.

https://www.amazon.com/Applications-Alternate-Bartlett-Publishers-Mathematics/dp/0763782491
https://www.amazon.com/Applications-Alternate-Bartlett-Publishers-Mathematics/dp/0763782491

Vector spaces

The vector space Rn

To work with vectors in a vector space Rn, we use Neandertal vectors.
The simplest way to construct the vector is to call a constructor func-
tion, and specify the dimension n as its argument. Sometimes the gen-
eral vctr function is appropriate, while sometimes it is easier to work
with specialized functions such as dv and sv (for native vectors on
the CPU), clv (OpenCL vectors on GPU or CPU), or cuv (CUDA GPU
vectors).

At first, we use native, double floating-point precision vectors
on the CPU (dv). Later on, when we get comfortable with the vector
based thinking, we introduce GPU vectors.

To get access to these constructors, we require the namespace
that defines them. We also require the core namespace, where most
functions that operate on vectors and matrices are located.

(require ’[uncomplicate.neanderthal

[native :refer :all]

[core :refer :all]])

For example, v1 is a vector in R4, while v2 is a vector in R22.

(def v1 (dv -1 2 5.2 0))

(def v2 (dv (range 22)))

If we print these vectors out in the REPL, we can find more details
about them, including their components (elements, entries):

v1

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-1.00 2.00 5.20 0.00]

v2

=>

#RealBlockVector[double, n:22, offset: 0, stride:1]

[0.00 1.00 2.00 20.00 21.00]

52 numerical linear algebra for programmers [sample 1.0.0]

23 xpy mnemonic: x plus y.

24 scal, scalar multiplication

Addition and scalar multiplication

Math books define vector spaces using surprisingly few (at least to us,
programmers) things: addition and scalar multiplication.

Addition in mathematics is simply an operation, +, but in pro-
gramming, we are doing numerical computations, so we are also
concerned with the implementation details that math textbooks do not
discuss. One way to add two vectors would be the function xpy23:

(xpy v1 v2)

=>

clojure.lang.ExceptionInfo

Dragan says: You cannot add incompatible or ill-fitting structures.

This does not work, since we cannot add two vectors from dif-
ferent vector spaces (R4 and R22), and when we evaluate this in
the REPL, we get an exception.

The vectors have to be compatible, both in the mathematical sense
being in the same vector space, and in an implementation specific way,
in which there is no sense to add single-precision CUDA vector to a
double-precision OpenCL vector.

Let’s try with v3, which is in R4:

(def v3 (dv -2 -3 1 0))

(xpy v1 v3)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-3.00 -1.00 6.20 0.00]

This function is pure; v1 and v2 have not changed, while the result
is a new vector instance (which in this case has not been kept,but went
to the garbage).

Scalar multiplication is done using the pure function scal.24 It ac-
cepts a scalar and a vector, and returns the scaled vector, while leav-
ing the original as it was before:

(scal 2.5 v1)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-2.50 5.00 13.00 0.00]

v1

vector spaces 53

25 Note the ! suffix.

26 zero-vector

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-1.00 2.00 5.20 0.00]

Pure functions are nice, but in the real world of numerical compu-
tations, we are constrained with time and space: we need our vectors
to fit into available memory, and the results to be available today.
With vectors in R4, computers will achieve that no matter how bad
and unoptimized our code is. For the real world applications though,
we’ll deal with billions of elements and demanding operations. For
those cases, we’ll want to do two things: minimize memory copying,
and fuse multiple operations into one.

When it comes to vector addition and scalar multiplication, that
means that we can fuse scal and xpy into axpy24 and avoid mem-
ory copying by using destructive functions such as scal! and axpy!25.

(axpy! 2.5 v1 v3)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-4.50 2.00 14.00 0.00]

Note that v3 has changed as a result of this operation, and it now con-
tains the result, written over its previous contents:

v3

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-4.50 2.00 14.00 0.00]

Special vectors

Zero vector can be constructed by calling vector constructor with an in-
teger argument that specifies dimension:26

(dv 7)

=>

#RealBlockVector[double, n:7, offset: 0, stride:1]

[0.00 0.00 0.00 0.00 0.00]

When we already have a vector, and need a zero vector in the same
vector space, having the same dimension, we can call the zero func-
tion:

(zero v2)

54 numerical linear algebra for programmers [sample 1.0.0]

=>

#RealBlockVector[double, n:7, offset: 0, stride:1]

[0.00 0.00 0.00 0.00 0.00]

Negative of a vector is computed simply by scaling with -1:

(scal -1 v1)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[1.00 -2.00 -5.20 -0.00]

How to do vector subtraction? As we mentioned earlier, there are
only two independent operations in Rn, vector addition and scalar
multiplication. Vector subtraction is simply an addition with the neg-
ative vector. We can do this with one fused operation, be it axpy
or axpby:

(axpby! 1 v1 -1 v3)

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[3.50 0.00 -8.80 0.00]

Linear combinations of vectors

To compute a linear combination such as au + bv + cw, we can use mul-
tiple axpy calls or even let one axpy call sort this out (and waste less mem-
ory by not copying intermediate results)!

(let [u (dv 2 5 -3)

v (dv -4 1 9)

w (dv 4 0 2)]

(axpy 2 u -3 v 1 w))

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[20.00 7.00 -31.00]

Column vectors

Both row vectors and column vectors are represented in the same
way in Clojure: with Neanderthal dense vectors. Orientation does
not matter, and the vector will simply fit into an operation that needs
the vector to be horizontal or vertical in mathematical sense.

vector spaces 55

27 dot product

28 nrm2: L2 norm, length, magnitude

29 normalizing the vector

Dot product, norm, angle, and distance

Dot product of two compatible vectors, is a scalar sum of products
of the respective entries.

u · v = u1v1 + u2v2 + · · ·+ unvn (1)

It can be computed using the function with a predictably boring
name, dot27:

(let [u (dv 1 -2 4)

v (dv 3 0 2)]

(dot u v))

=> 11.0

Norm (aka length, or magnitude, or L2 norm) most often refers to
the Euclidean distance between two vectors, although other norms
can be used:

‖u‖=
√

u2
1 + u2

2 + · · ·+ u2
n (2)

In Clojure, we use the nrm228 function to compute this norm:

(nrm2 (dv 1 3 5))

=> 5.916079783099616

A unit vector is a vector whose norm is 1. Given a vector v, we can
construct a unit vector u in the same direction.

u =
1
‖v‖v (3)

In Clojure code, we can do this as the following code shows.

(let [v (dv 1 3 5)]

(scal (/ (nrm2 v)) v))

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[0.17 0.51 0.85]

This process is called normalizing the vector.29

Angle between vectors

Any linear algebra book will teach how to compute the cosine
of an angle between two vectors.

56 numerical linear algebra for programmers [sample 1.0.0]

30 orthogonal vectors

31 distance between points

32 See math textbooks for details.

cosθ =
u · v
‖u‖‖v‖ (4)

We can program this easily using the dot and nrm2 functions
that we have already introduced.

(let [u (dv 1 0 0)

v (dv 1 0 1)]

(/ (dot u v) (nrm2 u) (nrm2 v)))

=> 0.7071067811865475

We can compute θ out of this cosine, but sometimes we do not
even need to do that. For example, two vectors are orthogonal30 if
the angle between them is 90◦. Since we know that cos π

4 = 0, we can
simply test whether the dot product is 0.

(dot (dv 2 -3 1) (dv 1 2 4))

=> 0.0

These two vectors are orthogonal.
We can determine distance between points31 in a vector space by cal-

culating the norm of the difference between their direction vectors.

d(x, y) = ‖x− y‖ (5)

In Clojure, that is as simple to do as computing the norm of the dif-
ference of two vectors.

(let [x (dv 4 0 -3 5)

y (dv 1 -2 3 0)]

(nrm2 (axpy -1 y x)))

=> 8.602325267042627

General vector spaces

It is important to note that real vectors are not the only "kind" of vec-
tor spaces there is. Anything that has operations of addition and scalar
multiplication that have certain properties32 is a vector space. Some well
known vector spaces are real vectors (Rn), matrices (Mmn), complex
vectors (Cn), and, of course, functions. However, when we do numeri-
cal computing, we usually work with real or complex vectors and ma-
trices, so in the following discussion we refer only to the parts of the
textbook that deal with those. For the abstract theoretical parts,
we typically do not use programming anyway, but our trusty pen and pa-
per.

vector spaces 57

33 dense matrix (GE)

34 Frobenius norm

We have already learned how to use vectors. With matrices, it’s
similar, just with more options. The first difference is that we can use
different optimized implementations of matrices, to exploit knowl-
edge of their structure. Therefore, there are dense matrices (GE)33,
dense triangular matrices (TR), dense symmetrical matrices (SY), vari-
ous banded storages for symmetric and triangular matrices, sparse ma-
trices (Sp), etc.

Let’s construct a matrix and compute its norm:

(def m (dge 2 3 (range 6)))

m

=>

#RealGEMatrix[double, mxn:2x3, layout:column, offset:0]

p ↓ ↓ ↓ q
→ 0.00 2.00 4.00

→ 1.00 3.00 5.00

x y

(nrm2 m)

=> 7.416198487095662

Euclidean norm applied to matrices is known as the Frobenius norm.34

Most of the functions that can be applied to vectors, can also be
applied to matrices. Furthermore, there are many more linear algebra
functions that work exclusively with matrices.

Subspaces and linear combinations

These two topics, Subspaces and Linear Combinations are theoretical.
We skip them, since we cannot do anything in code related to this.

Linear dependence and independence

Typical math textbook covers lots of theory related to linear depen-
dence and independence of vectors.

When it comes to computation, we can note that two vectors are
linearly dependent if they are on the same line, implying that the an-
gle between them is 0, meaning the cosine is 1. If cosine is not 1, they
are independent. There is a catch, though: floating-point computations
are not absolutely precise. For very large vectors, sometime there
will be rounding error, so we might get something like 0.99999999

or 1.000001.
Comparing floating-point numbers for equality is a tricky business.

Keep that in mind, and know that even there Neanderthal can help us, since

58 numerical linear algebra for programmers [sample 1.0.0]

it offers functions that take some imprecision margin into account.
See the Neanderthal API docs and look up functions such as f=

in the math namespace.
So, linear dependence is computed in the following way.

(let [x (dv 2 -1 3)

y (dv 4 -2 6)]

(/ (dot x y) (nrm2 x) (nrm2 y)))

=> 1.0

These two vectors are linearly dependent indeed.
But, what if we have more than two vectors, and are tasked with

ckecking whether their set is dependent or not?
Consider example 1 from the page 170 of the textbook I recom-

mended. There is a set of vectors {x = (1, 2, 0), y = (0, 1,−1), z =

(1, 1, 2)}, and we need to find whether there are scalars c1, c2, and c3,
such that c1x + c2y + c3z = 0.

This leads to a system of linear equations that, when solved,
could have an unique solution, in which case the vectors are linearly
independent, or to more than one solution, in which case the vectors
are linearly dependent.

Luckily for us, Neanderhal offers functions for solving systems
of linear equations. Require the linalg namespace to reach for them.

(require ’[uncomplicate.neanderthal.linalg :refer :all])

Now, we can set up and solve the system that will find the answer.

(sv! (dge 3 3 [1 2 0

0 1 -1

1 1 2])

(dge 3 1))

=>

#RealGEMatrix[double, mxn:3x1, layout:column, offset:0]

p ↓ q
→ 0.00

→ -0.00

→ -0.00

x y

Just like in the textbook, the solution is: c1 = 0, c2 = 0, c3 = 0.
If we tried with obviously dependent vectors, we would have got an
exception complaining that the solution could not be computed.

http://neanderthal.uncomplicate.org/codox

vector spaces 59

35 svd: singular value decomposition

36 Example 3 on page 185 in the text-
book.

Basis and dimension

Here are two more theoretical topics. They do not offer great mate-
rial for code demonstration.

Note that the dimension of the space of a vector could be inquired
with the (dim x) function. The dimension of the space of the ma-
trix is m × n, so (* (mrows a) (ncols a)). All the spaces we deal
with here have finite dimension, while we leave infinite dimension vec-
tors to pen and paper adventures.

Rank

Rank of a matrix is useful since it relates matrices to vectors, and can
tell us some useful properties of a matrix at hand. See the textbook
for the definition and use. What is the question right now is how do we
compute it? It is not easy at all, without a linear algebra library.
When we inquire about the rank, we expect a natural number as a re-
sult.

We can get rank by doing singular value decomposition by calling
the function svd35, and inspecting one of its results, namely the sorted
vector of singular values s. The number of singular values in :sigma

that are greater than 0 is the rank of the matrix. As before, take into
the account that floating point numbers should be compared with equal-
ity carefully.

Here is an example36 done in Clojure.

(let [a (dge 4 4 [1 0 0 0

2 0 0 0

0 1 0 0

0 0 1 0])]

(svd a))

=>

#uncomplicate.neanderthal.internal.common.SVDecomposition{

:sigma #RealDiagonalMatrix[double, type:gd mxn:4x4, offset:0]

p q
↘ 2.24 1.00 1.00 0.00

x y
, :u nil, :vt nil, :master true}

After inspecting the vector :sigma for non-zero values (visu-
ally, or by writing a small function that checks its elements) we are a lit-
tle better informed than before since we now know that rank(A) = 3.

This seems so cumbersome. Why isn’t there a function rank in
Neanderthal that does this for us? Well, the problem is that we rarely

60 numerical linear algebra for programmers [sample 1.0.0]

need to compute only the rank. Often we also need those other re-
sults from svd! or similar functions. If rank was so easy to access,
it would have promoted wasteful computations of other results that
go with it. If we really need rank it is easy to write that function
as part of a personal toolbox. What is important is that the cake
is available right now, so we can easily add our own cherries on top of it.

Orthonormal vectors and projections

This is yet another theoretical section. From the computational point
of view, what could be interesting, is computing projection of a vector
onto another vector or a subspace.

projuv =
v · u
u · u u (6)

It boils down to the ability to compute the dot product and then
scale the vector u.

(let [v (dv 6 7)

u (dv 1 4)]

(scal (/ (dot u v) (dot u u)) u))

=>

#RealBlockVector[double, n:2, offset: 0, stride:1]

[2.00 8.00]

This is similar for subspaces, so that might be the obligatory trivial
exercise that is being left to the reader.

Eigenvalues and eigenvectors

Matrix transformations

Linear transformations

High performance matrix computations

Use matrices efficiently

Linear systems and factorization

Singular value decomposition (SVD)

Orthogonalization and least squares

In practice

GPU computing crash course

Generating random matrices

Broadcasting

Mean, variance, and correlation

Principal component analysis (PCA)

Appendix

Setting up the environment and the JVM

setting up the environment and the jvm 93

Many more early supporters helped me create this book. Thank you!
David Pham, Mandimby RAVELOARINJAKA, Davide Del Vecchio,

Joshua M, Scott MacFarlane, Estevo U. C. Castro, Rokas Ramanauskas,
Saransh Mohapatra, James, Amar, Scott Jappinen, Don Jackson, Bran-
don Adams, Kimmo Koskinen, Salvatore Uras, Jeffrey Cummings, Ben-
jamin Rood, Alexander Yakushev, Evan Niessen-Derry, Dan Dorman,
Robert Postill, Felipe Gerard, Ted McFadden, James Tolton, drew ver-
lee, Tracy Shields, Emmanuel Oga, Jon Anthony, Boris, Jason Gilbert-
son, Pedro Gomes, Thomas Wengerek, Joseph Bore, Leon Talbot,
k-sunako, Robert Crim, Nick Jones, Christoph Ulrich, Chris Bil-
son, Vijay Edwin, Zack Teo, Hans Royer, James Good, Tim Howes,
Erkki Keränen, Arthur Ulfeldt, Alfred Thompson, Mike Ananev,
Alex Doroshenko, Alex Murphy, Trevor Prater, Tomáš Drenčák, Bran-
don, Matt Burbidge, Matt Pendergraft, Yiu Ming Huynh, Paul Snively,
Donald Bleyl, Ken Rawlings, Martin Jung, Otis Clark, Pavithra So-
lai Jawahar, Nicholas Stares, Jonathan Rioux, Dennis Orsini, Am-
resh Venugopal, Stephan S-E, Jason Mulvenna, Rohit Thadani, Va-
lerii Praid, Pitti, Peter Makumbi, MR A BIN SALMAN, Pete Windle,
John Sullivan, Eric Fode, Matthew Chadwick, Jaihindh Reddy, Dar-
rick Wiebe, Bor Hodošček, Christopher Hugh Graham, Sam Symons,
Ben Wiedemann, infiniteone, Dan Pomohaci, Samuel Curran, Ariel Fer-
dman, Szabolcs, Jonathan Smith, indraniel, Martin, Rangel Spasov,
Jason Waack, Brandon Olivier, Machiel Keizer-Groeneveld, Amil-
car Blake, Nick Burkhart, Mooreisenough, Dmitri, Jay Zisch, Keith Mont-
gomery, Tara Lorenz, Jon Irving, Adam Morgan, Tory S. Anderson.

	I Getting started
	Introduction
	What?
	How?
	Why?
	When?
	The Interactive Programming for Artificial Intelligence series
	Let's go

	Hello world
	Motivation
	A library of linear algebra operations
	…and more
	Performance improvements

	Vectors, matrices, and Neanderthal API
	Creation
	Moving data around
	Lifecycle
	Specific matrix structures

	Polymorphic acceleration

	II Linear algebra refresher
	Vector spaces
	The vector space Rn
	Dot product, norm, angle, and distance
	General vector spaces
	Subspaces and linear combinations
	Linear dependence and independence
	Basis and dimension
	Rank
	Orthonormal vectors and projections

	Eigenvalues and eigenvectors
	Matrix transformations
	Linear transformations

	III High performance matrix computations
	Use matrices efficiently
	Linear systems and factorization
	Singular value decomposition (SVD)
	Orthogonalization and least squares

	IV In practice
	GPU computing crash course
	Generating random matrices
	Broadcasting
	Mean, variance, and correlation
	Principal component analysis (PCA)

	V Appendix
	Setting up the environment and the JVM

