

D R A G A N D J U R I C

D E E P L E A R N I N G F O R P R O -
G R A M M E R S [S A M P L E 1 . 0 . 0]

D R A G A N R O C K S

Please check other books from the Interactive Programming for Artifi-
cial Intelligence book series at https://aiprobook.com

This book is available at https://aiprobook.com/deep-learning-for-
programmers. Subscribe to the Patreon campaign, at https://patreon.com/deep_-
learning, and get access to all available drafts of further versions, and a num-
ber of nice perks.

All proceeds go towards funding the author’s work on the Uncom-
plicate software libraries: Please check out https://uncomplicate.org
and https://github.com/uncomplicate.

Copyright © 2019-2021 Dragan Djuric

published by dragan rocks

https://aiprobook.com

Current version, 30 Aug 2021

https://aiprobook.com
https://aiprobook.com/deep-learning-for-programmers
https://aiprobook.com/deep-learning-for-programmers
https://patreon.com/deep_learning
https://patreon.com/deep_learning
https://uncomplicate.org
https://github.com/uncomplicate

3

This book would not have been possible without your support. Thank you!
Eric Fode, Erich Oliphant, Chewxy, Stéphane Tavera, tom winn,

Alan Caulkins, Joe Norton, Andrew Dean, Anthony Carnemolla,
Bobby Calderwood, David Bernal, Emmanuel Auclair, Carlton Schuyler,
Siu Kin San, Lukasz Hall, Chris Curtis, Nada Amin, Walton, For-
rest Galloway, Eric Blood, John Collins, Christopher Genovese,
Matthew Chadwick, Boris, Hadil Sabbagh, Oleg Popov, Thomas Wen-
gerek, R Lassoued, Eric Somdahl, DANIEL Fredric CARPENTER,
Steven Collins, Saransh Mohapatra, ka yu Lai, Rune Brinckmeyer,
Eric Ihli, Max Triano, and many others (list continues at the back of the book).

I would also like to thank Clojurists Together and Cognitect for sup-
porting my work on the Uncomplicate libraries with generous grants.

Contents

I Getting started 9

Introduction 11

II Inference 17

Representing layers and connections 19

Bias and activation function 25

Fully connected inference layers 33

Increasing performance with batch processing 39

Sharing memory 41

GPU computing with CUDA and OpenCL 43

III Learning 51

Gradient descent and backpropagation 53

6

The forward pass 55

The activation and its derivative 57

The backward pass 59

IV A simple neural networks API 61

Inference API 63

Training API 65

Initializing weights 67

Regression: learning a known function 69

V Training optimizations 85

Weight decay 87

Momentum and Nesterov momentum 89

Adaptive learning rates 91

Regression: Boston housing prices 93

Dropout 95

Stochastic gradient descent 97

7

Classification: IMDB sentiments 99

VI Tensors 115

Classification and metrics: MNIST handwritten digits recognition 117

Tensors and ND-arrays 119

Tensor transformations 121

DNNL: Tensor operations on CPU 123

Tensor-based neural networks 125

cuDNN: Tensor operations on GPU 127

VII Convolutional networks 129

The convolution operation 131

Convolutional layers on the CPU with DNNL 133

Convolutional neural networks (CNN): Fashion-MNIST 135

CNN on the GPU with cuDNN 137

VIII Appendix 139

Setting up the environment and the JVM 141

Getting started

1 More probably, on your screen.

Figure 1: The DLFP book
2 https://clojure.org
3 There is a free online book "Clojure
for the Brave and True" at https:
//brave-clojure.com, and if you
prefer a deeper text, https://clojure.
org/books is a good place to browse.

Introduction

Dear reader, the text you hold in your hands1 is the first - imper-
fect, but useful, I hope - version of the only book in this field writ-
ten with programmers in mind. As any good software, it’s devel-
oped continuously. I plan to keep an endless stream of improve-
ments, with milestones released as full versions 2, 3, etc. Hence,
this is not the first edition, it’s version one-point-zero.

What?

The full title of the book is "Deep Learning for Programmers: An
Interactive Tutorial with CUDA, OpenCL, DNNL, Java, and Clo-
jure" (Figure 1). Let’s elaborate this.

The main topic is deep learning (DL), a subset of machine learn-
ing (ML) methods mainly based on neural networks (NN). At this mo-
ment, DL, very popular and successful in practice, is followed by count-
less books and articles. Alas, most of this literature is either oriented
towards PhD researches, or less-technical users. There was a gaping
hole where teaching how to implement this kind of software should
have been, which I hope I’m helping cover - at least partially - with
this book. Therefore, this book is for programmers, rather than ML
researchers, mathematicians, cancer researchers, or business analysts.

Every single line of code in this book is written in Clojure2, a mod-
ern dialect of Lisp that compiles to Java bytecode and runs on Java Vir-
tual Machine (JVM). I assume that you’re already proficient in Clo-
jure, but if you are not, the basics are fairly easy to learn3.

Since our programs will run on a broad choice of exotic hardware,
more notably GPUs, we’ll have to work with software platforms such
as OpenCL, or Nvidia’s CUDA, in addition to the Java platform. These
platforms are notoriously tricky to learn and use. Fortunately, I man-
aged to hide them under the hood. You’ll only need to learn to con-
trol them through Clojure, in a similar way you control the JVM.
The only programming language we’ll use is Clojure, and, yet, we
get the full speed and power of these platforms.

In short, you’re going to learn:

https://clojure.org
https://brave-clojure.com
https://brave-clojure.com
https://clojure.org/books
https://clojure.org/books

12 deep learning for programmers [sample 1.0.0]

4 Short from Read Evaluate Print Loop.

5 You might expect that Clojure
REPL workflow is something like
you’ve seen in Python, Ruby, and
JavaScript ecosystems, but it’s not;
don’t skip this.

• the principles behind DL (and ML)

• only the necessary math and theory

• how to translate ML theory to code, step-by-step

• how to apply these techniques to implement NN from scratch

• how to implement other algorithms using vectors and matrices

• how to encapsulate these with elegant interfaces

• how to integrate with high-performance vendor libraries

• the nuts and bolts of a tensor-based deep learning library

• how to write simple, yet fast, number crunching software

• generally applicable high-performance programming techniques

Rather than being constrained to deep learning only, I hope that it
opens a real-world portal to high-performance scientific computing.

How?

The title contains the phrase An Interactive Tutorial. Rather than
throwing a pile of in-depth theory and specification at you, it starts
from the simplest of the simple Hello World programs, which does
almost nothing, but still does something. Then, in each chapter, we
gently add one or two concepts, growing the program to do more.
This book is not even trying to be a reference, it aims to be a great
tutorial. I wrote it to be read in order, since each chapter builds on
what has been learned earlier.

Thanks to Clojure and its REPL4, this tutorial is interactive: as
soon as I show you a line of code, you can evaluate it, and see the
result immediately, even when the program is far from complete. There
are no restarts, debug statements, println, nor carpets of boilerplate
code.

You start the Clojure’s JVM once, and work on the pieces of the pro-
gram while it is running all the time, including the code that runs on GPU.
If you’re already familiar with what I’m talking about, great; but if that’s
not the case, I strongly advise that you keep your mind open and look
around for demonstrations of Clojure’s REPL4 oriented program-
ming. I recommend using Emacs + CIDER, but there are other tools
that you might prefer. I don’t care, as long as you are using the REPL-
oriented process, rather than emulating interactive Python console5.

introduction 13

6 Healthy, yet delicious? Impossi-
ble! Or, is it?

Why?

Why bother with this? Why did I write this, despite millions of pages
on DL that had already been available, and why should you read this,
instead of choosing from thousands upon thousands of papers and hun-
dreds of books on ML?

Why use Clojure, and why use Neanderthal and Deep Diamond?
There is TensorFlow by Google, there is PyTorch by Facebook, there
is MxNet by Amazon. Why not just learn these, and use the abun-
dance of features they offer?

Google, Facebook, and Amazon certainly know what they’re doing.
But, they are solving different problems than the ones I have. If I was in
competition to out-google Google, I would probably need to use
(a better) TensorFlow. Most of TensorFlow’s features might be a great
fit for Google, but are bloated for the challenges that smaller compa-
nies have. What is a feature for these giants is often a shackle around
little guy’s ankles.

Moreover, you might’ve noticed that learning how to tame these
beasts is not as easy as advertised. Tings you learn here will help you
understand how these big frameworks work and how to use them
optimally, even if TensorFlow and MxNet are the right tool for you.
So, I guess that there’s no downside. . .

Software is abundant, as well as superficial tutorials. The challenge
is that the literature that would teach you foundations was not very good.

There are roughly two groups of texts:
The first is written by researchers, where their authors try to show off

by discussing every research topic they’d ever been in contact with,
rather than write tutorials that try to teach the area. After one of those,
you probably won’t be any wiser about how to construct even a hello
world program.

There are many practical texts, that teach you how to classify im-
ages, generate voice, or produce a whole fake video, but are superfi-
cial on how that actually works under the hood. These are more re-
cent and can be very useful once you know these “under the hood” things.
But how to get to that point?

Rather than giving you a Big Mac Lunch Box, this book shows how
to catch a fish, start a fire, and cook a moderate, yet healthy and
delicious meal!6

When?

Wherever you are in your Clojure journey, you can start right now!
In that regard, the book is self-sufficient. We start from very basic
things without assuming much about your math background, other

14 deep learning for programmers [sample 1.0.0]

7 Take this with a grain of salt. I at-
tended my high school and uni-
versity in East Europe; curriculum
in you part of the world might be
more advanced (good) or lagging
behind (then you might have to do
some catching up).

8 The book is freely available online
at https://www.deeplearningbook.
org/.

9 Freely available at http://
neuralnetworksanddeeplearning.com/
10 It’s Python, anyway. OTOH, it
might be good as a baseline to com-
pare to.

Figure 2: The LAFP book

than high school or first year university linear algebra and calculus.7

Even these are introduced through examples and without digression,
as much as possible.

I hope that, as a programmer, you like the iterative and incremen-
tal approach to software development, because this is exactly how
we’ll work in this book. We start from one tiny lump of snow which
we will roll and roll downhill many times until we build a huge
avalanche. You’ll know every single snowflake as your own pocket.

To stay true to these words, I won’t write any introduction prose
about the generalities of machine learning, deep learning, neural net-
works, their history, and whatever DL books spend the first 100 pages on.
If you need such introduction, please check out the Deep Learning
book (TDLB) by Ian Goodfellow et al.8 This rare gem in the sea of
plastic waste is a good companion book to this book. Whenever you
find my explanations too laconic, or you need background informa-
tion, look there first; I’ve purposefully made my presentation compati-
ble with TDLB. Another good companion, especially to the first dozen
chapters, is Michael Nielsen’s Neural Networks and Deep Learning9.
Its code is much more toy-ish than ours10, and I doubt you’ll need
it often, but it might be a good additional resource for beginners.

The Interactive Programming for Artificial Intelligence series

So, you can comfortably use this book on its own and supplement
it with TDLB for detailed theoretical background when needed. What-
ever linear algebra and calculus is required to understand what we’re
doing, I explain and demonstrate on the go. Moreover, this book is
a primer on how to write software based on linear algebra.

Numerical Linear Algebra for Programmers

However, a decent percentage of Clojure (and Java, and Python,
and C++) programmers forgot whatever linear algebra they had learned
in school. My on-the-go explanations might be good enough that you
understand how the thing that we implemented works, but you might be
still intrigued to more deeply understand why it works that way, and
how to recognize places where you can apply various techniques your-
self. Again, I wrote this book such that it shows these things, but I had
to constrain myself to the topic of deep learning.

The "Numerical Linear Algebra for Programmers: An Interactive Tu-
torial with GPU, CUDA, OpenCL, MKL, Java, and Clojure" book (Fig-
ure 2) is a from-zero-to-hero guide to linear algebra for programmers
who have never learned linear algebra or who have forgot too much of
what they once knew. It follows an engineering math book, and teaches

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

introduction 15

Figure 3: The Interactive Program-
ming Book (TIPB)

the same intuition and skills through Clojure code, with Neanderthal,
of course. After teaching you the foundational linear algebra topics,
it goes further and teaches how to apply them to typical program-
ming tasks. You can check the contents of the LAFP book, available at
https://aiprobook.com/numerical-linear-algebra-for-programmers/

and see whether it could be a good fit for you (there’s a free sample).

The Interactive Programming Book

This is the book that teaches the programming tools and the software
development process. Although it is not a machine learning book, it
teaches fundamental skills necessary for effective application of what
the other books teach. It also complements the books on Clojure, which
teach you the language itself, but not how to hold the pencil and how
to press it to the paper. Figure 3 shows the cover page that I have
already designed, but I’m yet to write it. Please check my blog https:

//dragan.rocks for news and updates. Once the first drafts are ready,
they’ll be available at https://aiprobook.com.

Other books!

And that is not all! Two books (DLFP and LAFP) are already here, at
version 1.0, one (TIPB) is in my mind, about to be started, but I plan
to write at least a few more. One book will teach GPU programming
that will cover CUDA and OpenCL. In DLFP we only use GPU, there
we will learn how to write custom GPU programs. I expect that to be
fairly thin, 150-200 pages.

Yet another will be a from-basics-to-GPU tutorial about probabil-
ity and probabilistic data analysis. That’s a tricky subject, so it will
take some time, and may grow to be even thicker than DLFP. I hope
that I’ll be able to interest enough readers and subscribers so these two
books can see the light of day, too.

So, that’s 5 books in total planned so far. I’m looking forward
to see Clojure with such a strong covering of these tricky topics!

Beyond that, it’s too early to say, but who knows. . .

Let’s go

So, check out the Appendix if you need to set up the libraries that
we use in this book, take a look at the TOC to get a feel of what
we’re about to cover, and enjoy reading the first chapter without
further delay.

Please do not hesitate to share any thoughts publicly online (and
help spreading the word). I’m interested in both what’s good and
what should be improved. I’m learning from you, too!

https://aiprobook.com/numerical-linear-algebra-for-programmers/
https://dragan.rocks
https://dragan.rocks
https://aiprobook.com

Inference

11 We support x86/amd64-based
processors on all 3 major operating
systems: Linux, Windows, and macOS.
12 We support all major vendors:
Nvidia via CUDA, and AMD, Intel,
and Nvidia via OpenCL.

Representing layers and connections

Our journey of building a deep learning library that runs on both
CPU11 and GPU12 begins. We start from a clean slate, with only a ma-
trix library, Neanderthal, in our toolbox.

Neural networks structure

Figure 4 shows a typical neural network diagram. As the story usu-
ally goes, we plug some input data into the input layer, and the net-
work then propagates the signal through hidden layer 1 and hidden
layer 2, via weighted connections, to produce the output at the output
layer. For example, the input data could be the pixels of an image,
and the output represents "probabilities" of this image belonging to
a class, such as cat (y1) or dog (y2).

Figure 4: A typical neural network.

Neural Networks often classify complex things such as objects in
photographs, translate text, or "predict" future data. Mechanically,
though, there is no magic; they just approximate functions. What the

20 deep learning for programmers [sample 1.0.0]

inputs and outputs are is not particularly important at the moment.
The network can approximate (or, to be fancy, predict) even mundane
functions such as, for example, y = sin(x1) + cos(x2).

A network of the hello world level of simplicity is shown in Fig-
ure 5.

Figure 5: A simple net-
work with two neurons in the in-
put, one neuron in the out-
put, and four neurons in the single hid-
den layer.

A neural network can be seen as a transfer function. We provide
an input, and the network propagates that signal to calculate the out-
put. On the surface, this is what many computer programs do any-
way.

Different from everyday functions that we use, neural networks com-
pute anything using only this architecture of nodes and weighted con-
nections. The trick is in finding the right weights so that the approxi-
mation is close to the "right" value. This is what learning in deep learn-
ing is all about. At this moment, though, we are only dealing with in-
ference, the process of computing the output using the given struc-
ture, input, and whatever weights there are.

Approaching the implementation

The most straightforward thing to do, and the most naive error to make,
is to read about analogies with neurons in the human brain, look at these
diagrams, and try to model nodes and weighted connections as first-
class objects. This might be a good approach to business-oriented prob-
lems. First-class objects might bring the ultimate flexibility: each node
and connection could have different polymorphic logic. In practice,
that flexibility does not work well. Even if it could help with better
inference, it would be much slower, and training such a wander-
ing network would be a challenge.

Rather than in such enterprising "neurons", the strength of neural
networks is in their simple structure. Each node in a layer and each con-
nection between two nodes has exactly the same structure and logic.

representing layers and connections 21

Figure 6: Connections between two lay-
ers

13 Read more about basic vector opera-
tions in the chapter on Vector Spaces
(LAFP book).

The only moving parts are the numerical values in weights. We can ex-
ploit that, and create efficient implementations that fit well into hard-
ware optimizations for numerical computations.

It seems that the human brain analogy is more a product of market-
ing than a technical necessity. A simple neural network layer imple-
ments logistic regression. There are more advanced structures, but the point
is that they do not implement anything close to biological neurons.

The math

Let’s just consider the input layer, the first hidden layer, and the con-
nections between them, shown in Figure 6.

We can represent the input with a vector of two numbers, and the out-
put of the hidden layer 1 with a vector of four numbers. Note that, since
there is a weighted connection from each xn to each h(1)m , there are
m× n connections. The only data about each connection are its weight,
and the nodes it connects. That fits well with what a matrix can repre-
sent. For example, the number at w21 is the weight between the first in-
put, x1 and the second output, h(1)2 .

Here’s how we compute the output of the first hidden layer:

h(1)1 = w11 × x1 + w12 × x2

h(1)2 = w21 × x1 + w22 × x2

h(1)3 = w31 × x1 + w32 × x2

h(1)4 = w41 × x1 + w42 × x2

These are technically four dot products13 between the correspond-
ing rows of the weight matrix and the input vector.

h(1)1 = ~w1 ·~x =
n

∑
j=1

w1jxj

h(1)2 = ~w2 ·~x =
n

∑
j=1

w2jxj

h(1)3 = ~w3 ·~x =
n

∑
j=1

w3jxj

h(1)4 = ~w4 ·~x =
n

∑
j=1

w4jxj

22 deep learning for programmers [sample 1.0.0]

14 Read more in the chapter on Ma-
trix Transformations (LAFP book).

15

h(1)1 = 0.3× 0.3 + 0.6× 0.9 = 0.09 + 0.54 = 0.63

h(1)2 = 0.1× 0.3 + 2× 0.9 = 0.03 + 1.8 = 1.83

h(1)3 = 0.9× 0.3 + 3.7× 0.9 = 0.27 + 3.33 = 3.6

h(1)4 = 0× 0.3 + 1× 0.9 = 0 + 0.9 = 0.9

Figure 7: The second transformation.

16 Yagni: You Are not Going to Need It.

Conceptually, we can go further than low-level dot products. The weight
matrix transforms the input vector into the hidden layer vector. We do not
have to juggle indexes and program low-level loops. The basic matrix-
vector product implements the propagation from each layer to the next!14

h(1) = W(1)x

y = W(2)h(1)

For example, for some specific input and weights15 the network shown
in Figure 6 computes in the following way:

h(1) =

0.3 0.6
0.1 2
0.9 3.7
0.0 1

[

0.3
0.9

]
=

0.63
1.83
3.6
0.9

The hidden layer then propagates the signal in the same man-

ner (Figure 7).

y =
[
0.75 0.15 0.22 0.33

]
0.63
1.83
3.6
0.9

 =
[
1.84

]

The code

To try this in Clojure, we require a few basic Neanderthal functions.

(ns dragan.rocks.dlfp.part-2.representing-layers-and-connections

(:require [uncomplicate.commons.core :refer [with-release]]

[uncomplicate.neanderthal

[native :refer [dv dge]]

[core :refer [mv mv!]]]))

The minimal code example, following the Yagni principle 16, would be
something like this:

(def x (dv 0.3 0.9))

(def w1 (dge 4 2 [0.3 0.6

0.1 2.0

0.9 3.7

0.0 1.0]

{:layout :row}))

https://martinfowler.com/bliki/Yagni.html

representing layers and connections 23

Figure 8: A simple network from Fig-
ure 5 repeated for convenience.

(def h1 (mv w1 x))

h1

After we evaluate this code, we get the following result in the REPL.

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.63 1.83 3.60 0.90]

The code directly corresponds to the formulas it has been based on.
w1, x, and h1 represent weights, input, and the first hidden layer. The func-
tion mv applies the matrix transformation w1 to the vector x, by multi-
plying x by w1. mv can stand for "matrix times vector", or "multiply vec-
tor", whatever you prefer as a mnemonic.

We should make sure that this code works well with large networks
processed through lots of cycles when we get to implement the learn-
ing part, so we have to take care to reuse memory; thus we use the de-
structive version of mv, mv!. The memory that holds the data is outside
of the JVM. We need to take care of its lifecycle and release it (auto-
matically, using with-release) as soon it is not needed. This might be
unimportant in demonstrative examples, but is crucial in "real" use cases.
Here is the same example with proper cleanup.

(with-release [x (dv 0.3 0.9)

w1 (dge 4 2 [0.3 0.6

0.1 2.0

0.9 3.7

0.0 1.0]

{:layout :row})

h1 (dv 4)]

(println (mv! w1 x h1)))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.63 1.83 3.60 0.90]

The output of the hidden layer, computed by the mv! function, is the in-
put of the output layer (Figure 8). We transform it by yet another
weight matrix, w2.

(def w2 (dge 1 4 [0.75 0.15 0.22 0.33]))

(def y (dv 1))

(mv! w2 (mv! w1 x h1) y)

24 deep learning for programmers [sample 1.0.0]

17 If it is not clear to you why this hap-
pens, read more in the section
on composition of transformations
(LAFP book).

=>

#RealBlockVector[double, n:1, offset: 0, stride:1]

[1.84]

The final result is y1 = 1.84. Who knows what it represents and which
function it approximates. The weights we plugged in are not the result
of any training nor insight. I have just pulled some random numbers
out of my magic hat to demonstrate the computation steps.

This is not much but is a good first step

The network we have just created is still a simple toy.
Our toy is not even a proper multi-layer perceptron, since we did not

implement non-linear activation of the outputs. Funnily, the nodes
we have implemented are perceptrons, and there are multiple layers
full of these. You’ll soon get used to the tradition of inventing con-
fusing and inconsistent grand-sounding names for every incremen-
tal feature in machine learning. Without non-linearity introduced
by activations, we could stack thousands of layers, and our "deep"
network would still perform only linear approximation equivalent
to a single layer17.

We have not implemented thresholds, or biases, yet. We have also left
everything in independent matrices and vectors, without a structure
involving layers that would hold them together. And we have not even
touched the learning part, which is 95% of the work. There are more
things that are necessary, and even more things that are nice to have,
which we will cover. This code only runs on the CPU.

The intention of this chapter is to offer an easy start, so you do try
this code. We will gradually apply and discuss each improvement in
the following chapters. Run this easy code on your own computer, and,
why not, improve it in advance! The best way to learn is by experi-
menting and making mistakes.

18 To avoid the clutter, the appropri-
ate namespace declaration will not
be shown in all chapters. Please refer
to the source code that comes with this book
for the details about requiring the
functions that are used through-
out the book.

Bias and activation function

The current network implementation computes the same linear
transformation as a one-layer network. This unwanted linearity of
the whole structure can be avoided by adding bias and activation
function at the output of each layer.

Threshold and Bias

We can introduce basic decision-making capability by adding a cutoff
to the output of each neuron. When the weighted sums of its inputs
are below that threshold, the output is zero and when they are above,
the output is one.

output =

{
0 Wx ≤ threshold
1 Wx > threshold

(1)

x

y

Since we keep the current outputs in a potentially huge vector,
it would be inconvenient to write a scalar-based logic. Prefer a vector-
ized function, or create one if a convenient one is not available.

Neanderthal does not have the cutoff function, but we can create
one by subtracting threshold from the maximum of individual thresh-
olds and the values of the signal and then mapping the signum func-
tion to the result. There are simpler ways to compute this, but using
the existing functions, and doing the computation in-place has educa-
tional value. We will soon see that there are better things to use for trans-
forming the output than the vanilla step function.18

(defn step! [threshold x]

(fmap! signum (axpy! -1.0 threshold (fmax! threshold x x))))

26 deep learning for programmers [sample 1.0.0]

(let [threshold (dv [1 2 3])

x (dv [0 2 7])]

(step! threshold x))

=>

#RealBlockVector[double, n:3, offset: 0, stride:1]

[0.00 0.00 1.00]

The next few code samples we will follow a few steps in the evo-
lution of the code, and will reuse weights and x. To simplify the ex-
ample, we will use global def and not care about properly releasing
the memory. It will not matter in a REPL session, but do not forget
to do it in the real code.

(def x (dv 0.3 0.9))

(def w1 (dge 4 2 [0.3 0.6

0.1 2.0

0.9 3.7

0.0 1.0]

{:layout :row}))

(def threshold (dv 0.7 0.2 1.1 2))

Since we do not care about additional object instances right now,
it is more convenient to use the pure mv function instead of mv!. mv cre-
ates the resulting vector y, instead of mutating the one that has to be pro-
vided as an argument.

(step! threshold (mv w1 x))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.00 1.00 1.00 0.00]

The bias is simply the threshold moved to the left side of the follow-
ing equation.

output =

{
0 Wx− bias ≤ 0
1 Wx− bias > 0

(2)

x

y

bias and activation function 27

With zero threshold, the step! function can be used as shown in the fol-
lowing code.

(def bias (dv 0.7 0.2 1.1 2))

(def zero (dv 4))

(step! zero (axpy! -1.0 bias (mv w1 x)))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.00 1.00 1.00 0.00]

As bias is the same as threshold there is no need for the addi-
tional zero vector, and the code becomes much simpler.

(step! bias (mv w1 x))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.00 1.00 1.00 0.00]

Activation Function

The decision capabilities supported by the step function are rather crude.
A neuron either outputs a constant value (1), or zero. It is better to use
functions that offer different levels of the signal strength. Instead of
the step function, the output of each neuron passes through an acti-
vation function. Countless functions can be an activation function, but
a handful proved to work exceptionally well.

Like neural networks themselves, the functions that work well are
simple. Activation functions have to be chosen carefully, to support
the learning algorithms, most importantly to be easily differentiable.
Until recently, the sigmoid and tanh functions were the top picks. Re-
cently an even simpler function, ReLU, became the activation function
of choice.

Rectified Linear Unit (ReLU)

ReLU is short for Rectified Linear Unit. The name sounds mysterious,
but it is a straightforward linear function that has zero value below
the threshold, which is typically zero.

f (x) = max(0, x) (3)

28 deep learning for programmers [sample 1.0.0]

x

y

ReLU is even simpler to implement than the step function.

(defn relu! [threshold x]

(axpy! -1.0 threshold (fmax! threshold x x)))

It might seem strange to keep the threshold as an argument to the
relu function. Isn’t ReLU always cut-off at zero? Consider it a bit
of optimization. Imagine that here is no built-in optimized ReLU
function. To implement the formula f (x) = max(0, x) we either
have to use a mapping over the max function, or to use the vector-
ized fmax, which requires an additional vector that holds the zeroes.
Since we need to subtract the biases before the activation anyway,
by fusing these two phases, we avoided the need for maintaining
an additional array of zeroes.

(relu! bias (mv w1 x))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.00 1.63 2.50 0.00]

This may, or may not, be the best choice for a complete library,
but since we are doing this to learn, we stick to the Yagni prin-
ciple. Of course, in real work it is best to use the relu function
that comes with Neanderthal.

Hyperbolic Tangent (tanh)

Hyperbolic tangent is a popular activation function.

tanh(x) =
sinh(x)
cosh(x)

=
e2x − 1
e2x + 1

(4)

bias and activation function 29

-2 -1 0 1 2

-1

0

1

Note how it is close to the identity function f (x) = x in large parts
of the domain between −1 and 1. As the absolute value of x gets larger,
tanh(x) asymptotically approaches 1. Thus, the output is between −1
and 1.

Since Neanderhtal has the vectorized variant of the tanh function
in its vect-math namespace, the implementation is easy.

(tanh! (axpy! -1.0 bias (mv w1 x)))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[-0.07 0.93 0.99 -0.80]

Sigmoid function

Before ReLU became popular, sigmoid was the most often used activa-
tion function. Sigmoid refers to a whole family of S-shaped functions,
or, often, to a special case: the logistic function.

S(x) =
1

1 + e−x =
ex

ex + 1
(5)

-4 -3 -2 -1 0 1 2 3 4

0.5

1

Standard libraries often do not come with an implementation of the
sigmoid function. We have to implement our own. We could imple-
ment it in the most straightforward way, just following the formula.
That might be a good approach if we are flexing our muscles, but
may be not completely safe if we intend to use such implemen-
tation for the real work. (exp 710) is too big to fit even in double,
while (exp 89) does not fit into float and produce the infinity (##Inf).

[(exp 709) (exp 710) (float (exp 88)) (float (exp 89))]

30 deep learning for programmers [sample 1.0.0]

=>

[8.218407461554972E307 ##Inf 1.6516363E38 ##Inf]

Tackle that implementation as an exercise, after we take another
approach instead. Let me pull the following equality out of the magic
mathematical hat, and ask you to believe me that it is true.

S(x) =
1
2
+

1
2
× tanh(

x
2
) (6)

We can implement that easily by combining the vectorized tanh!

and a bit of vectorized scaling.

(defn sigmoid! [x]

(linear-frac! 0.5 (tanh! (scal! 0.5 x)) 0.5))

Let’s program our layer with the logistic sigmoid activation.

(sigmoid! (axpy! -1.0 bias (mv w1 x)))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.48 0.84 0.92 0.25]

You can benchmark both implementations with large vectors, and
see whether there is a difference in performance. I expect that it takes
only a fraction of the complete run time of the network. Consider that
tanh(x) is correct, since it comes from a standard library, while a straight-
forward formula translation might not be good enough for a particu-
lar use case.

Layers with activations

The layers of our fully connected network now go beyond linear trans-
formations. We can stack as many as we’d like and do the inference.

Figure 9 is an updated version of the simple neural network with one hid-
den layer from the previous chapter, shown in Figure 10. It explic-
itly shows bias as an additional node. Since it connects with each node
in the following layer, it can be represented with a vector. The ac-
tivations are not shown to avoid clutter, but assume that each neu-
ron has an activation at the output.

bias and activation function 31

Figure 9: A simple net-
work with bias shown as an addi-
tional node (yellow).

Figure 10: A simple net-
work from the previous chapter re-
peated for convenience.

The code corresponding to this image builds on the existing exam-
ple from the previous chapter.

(with-release [x (dv 0.3 0.9)

w1 (dge 4 2 [0.3 0.6

0.1 2.0

0.9 3.7

0.0 1.0]

{:layout :row})

bias1 (dv 0.7 0.2 1.1 2)

h1 (dv 4)

w2 (dge 1 4 [0.75 0.15 0.22 0.33])

bias2 (dv 0.3)

y (dv 1)]

(tanh! (axpy! -1.0 bias1 (mv! w1 x h1)))

(println (sigmoid! (axpy! -1.0 bias2 (mv! w2 h1 y)))))

=>

#RealBlockVector[double, n:1, offset: 0, stride:1]

[0.44]

This is getting repetitive. For each layer we add, we have to herd
a few more disconnected matrices, vectors, and activation func-
tions in place. In the next chapter, we will fix this by abstracting it
into easy to use layers.

Figure 11: A typical net-
work from an earlier chapter re-
peated for convenience.

19 Due to the composition of transforma-
tions.

Fully connected inference layers

It’s time to consolidate the basic structure we have built so far into
a layer type, that is easy to use as a stand-alone building block.

The updated network diagram

We’ll update the neural network diagram from Figure 11, to reflect
the recently included biases and activation functions and show
it in Figure 12.

Figure 12: A typical neural net-
work with bias shown as an addi-
tional node (yellow).

In each layer, bias is shown as an additional, "zero"-indexed, node,
which, connected to the nodes in the next layer, gives the bias vector.
Activation functions have not been shown to avoid clutter. Consider
that each node has an activation at the output. If a layer did not have
any activation, it would have been redundant.19

34 deep learning for programmers [sample 1.0.0]

20 As in the previous chapter,
we leave out the namespace declaration.
Refer to the source code for that detail.

21 A widely used protocol
from the uncomplicate/commons

library, which serves as a hook
for with-release.
22 This is a standard Clojure mechanism.

The Layer type

We need a structure that keeps the account of the weights, biases
and output of each layer. It should manage the life-cycle and release
that memory space when appropriate. That structure can implement
Clojure’s IFn interface, so we can invoke it as any regular Clojure func-
tion.20

(import ’clojure.lang.IFn)

We will create FullyConnectedInference as a Clojure type, which
is then compiled into a Java class. FullyConnectedInference imple-
ments the release method of the Releaseable protocol21, and the invoke

method of IFn22. We would also like to access and see the weights and bias
values so we create new protocol, Parameters, with weight and bias

methods.

(defprotocol Parameters

(weights [this])

(bias [this]))

(deftype FullyConnectedInference [w b h activ-fn]

Releaseable

(release [_]

(release w)

(release b)

(release h))

Parameters

(weights [this] w)

(bias [this] b)

IFn

(invoke [_ x]

(activ-fn b (mv! w x h))))

Constructor function

At the time of creation, each FullyConnectedInference have to be
supplied with an activation function, a matrix for weights, and
the vectors for bias and output that have matching dimensions.
Of course, we will automate that process with a function.

(defn fully-connected [activ-fn in-dim out-dim]

(let-release [w (dge out-dim in-dim)

bias (dv out-dim)

h (dv out-dim)]

(->FullyConnectedInference w bias h activ-fn)))

fully connected inference layers 35

Now a simple call to the fully-connected function that specifies
the activation function and the dimensions of the input dimension
(the number of neurons in the previous layer) and output dimension
(the number of neurons in this layer) will create and properly initial-
ize it.

let-release is a variant of let that releases its bindings (w, bias,
and/or h) if anything goes wrong and an exception gets thrown in its
scope. with-release, on the other hand, releases the bindings in all cases.

Activation functions

We can use a few matching functions that we discussed in the previ-
ous chapter.

(defn activ-sigmoid! [bias x]

(axpy! -1.0 bias x)

(linear-frac! 0.5 (tanh! (scal! 0.5 x)) 0.5))

(defn activ-tanh! [bias x]

(tanh! (axpy! -1.0 bias x)))

Using the fully-connected function

We are ready to re-create the existing example in a more convenient
form. Note that we no longer have to worry about creating the match-
ing structures of a layer; it happens automatically when we create
each layer. I use the transfer! function to set up the values of weights
and bias, but typically these values will already be there after the
training (learning) of the network. We are using the same "random"
numbers as before as a temporary testing crutch.

(with-release [x (dv 0.3 0.9)

layer-1 (fully-connected activ-sigmoid! 2 4)]

(transfer! [0.3 0.1 0.9 0.0 0.6 2.0 3.7 1.0] (weights layer-1))

(transfer! (dv 0.7 0.2 1.1 2) (bias layer-1))

(println (layer-1 x)))

=>

#RealBlockVector[double, n:4, offset: 0, stride:1]

[0.48 0.84 0.92 0.25]

The output is the same as before, as we expected.

36 deep learning for programmers [sample 1.0.0]

23 This code uses the criterium li-
brary for benchmarking.

Multiple hidden layers

Note that the layer is a transfer function that, given the input, com-
putes and returns the output. As with other Clojure functions, the out-
put value can be an input to the next layer function.

(with-release [x (dv 0.3 0.9)

layer-1 (fully-connected activ-tanh! 2 4)

layer-2 (fully-connected activ-sigmoid! 4 1)]

(transfer! [0.3 0.1 0.9 0.0 0.6 2.0 3.7 1.0] (weights layer-1))

(transfer! [0.7 0.2 1.1 2] (bias layer-1))

(transfer! [0.75 0.15 0.22 0.33] (weights layer-2))

(transfer! [0.3] (bias layer-2))

(println (layer-2 (layer-1 x))))

=>

#RealBlockVector[double, n:1, offset: 0, stride:1]

[0.44]

If we do not count the transfer! calls, we have 3 lines of code
that describe the whole network: two lines to create the layers,
and one line for the nested call of layers as functions. It is already
concise, and we will still improve it in the following chapters.

Micro benchmark

With rather small networks consisting of a few layers with few neu-
rons each, any implementation will be fast. Let’s create a network
with a larger number of neurons, to get a feel of how fast we can
expect these things to run.

Here is a network with the input dimension of 10000. The exact
numbers are not important, since the example is superficial, but
you can imagine that 10000 represents an image that has 400 × 250

pixels. We have put 5000 neurons in the first layer, 1000 in the sec-
ond layer, and 10 at the output. Just some random large-ish dimen-
sions. Imagine ten categories at the output.23

(with-release [x (dv 10000)

layer-1 (fully-connected activ-tanh! 10000 5000)

layer-2 (fully-connected activ-sigmoid! 5000 1000)

layer-3 (fully-connected activ-sigmoid! 1000 10)]

(quick-bench (layer-3 (layer-2 (layer-1 x)))))

Criterium’s report looks like this.

fully connected inference layers 37

Evaluation count : 36 in 6 samples of 6 calls.

Execution time mean : 18.320566 ms

Execution time std-deviation : 1.108914 ms

Execution time lower quantile : 17.117256 ms (2.5%)

Execution time upper quantile : 19.847416 ms (97.5%)

Overhead used : 7.384194 ns

On my old CPU (i7-4790k), one inference through this network takes
18 milliseconds. If you have another neural networks library at hand,
you could construct the same network (virtually any NN software should
support this basic structure) and compare the timings.

So far so good

Finishing this task in 18 ms is not slow. But what if we had lots
of data to process? Does that mean that if I had 10 thousand inputs,
I’d need to make a loop that invokes this inference 10 thousand times,
and wait 3 minutes for the results?

Is the way to speed that up putting it on the GPU? We will do that
soon, but there is something that we can do even on the CPU to im-
prove the performance!

Increasing performance with batch processing

Sharing memory

24 Keep in mind that we do this
only for fun, and that it is a bad idea
for production code.

Figure 13: A neural network.
25 dge and dv constructors.

GPU computing with CUDA and OpenCL

This chapter demonstrates a network running on the GPU, at last.
We generalize the existing code so it can run on any supported GPU
device: on an Nvidia GPU with CUDA, and on an AMD GPU with OpenCL.
Our code will be so platform-agnostic that we will even be able to mix
CUDA and OpenCL24.

The inference layer type

We’re starting from the existing layer type, and trimmed down to keep
just the batch version. All functions that we have used, axpy, mm, etc.,
are polymorphic and general in respect to the device they execute on:
CPU, Nvidia GPU, AMD GPU, or Intel GPU. The implementations
of activation functions that we have used are general, too.

The dispatch to the right implementation is being done by the type
of the vector or matrix structure at hand. The constructor function
that we have used is hard-coded for using double floating point num-
bers, to exist in main memory, and use the native CPU backend25.

(defn fully-connected [activ-fn in-dim out-dim]

(let-release [w (dge out-dim in-dim)

bias (dv out-dim)]

(->FullyConnectedInference w bias activ-fn)))

Generalize the code

There is only one thing that we have to do to make this code com-
pletely general: use general constructors from the core namespace,
instead of the convenience methods from the native namespace.
These methods are, in this case, ge (general matrix) instead of dge
(double general native matrix), and vctr instead of dv (double na-
tive vector). The only difference in these methods is that they require
an engine-specific factory as their first argument.

We accommodate the fully-connected constructor to accept the fac-
tory that determines the implementation technology as an input.

https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.native.html##var-dge
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.native.html##var-dv
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.core.html
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.native.html
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.core.html#var-ge
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.core.html#var-vctr

44 deep learning for programmers [sample 1.0.0]

26 With a few caveats since JVM might not do it
as soon as we may hope.

27 In most cases it is best to do this
automatically by with-release

or let-release. In more advanced
cases, we can directly call release.

(defn fully-connected [factory activ-fn in-dim out-dim]

(let-release [w (ge factory out-dim in-dim)

bias (vctr factory out-dim)]

(->FullyConnectedInference w bias activ-fn)))

Now, we repeat the example of running the network with native-double.
That is the same factory that is used by the dge and dv methods, avail-
able in the native namespace. We can use native-float in its place,
to use single-precision floating point computations on the CPU, some of
the GPU factories, configure another factory coded by a 3-rd party,
or even use the same code provided by Neanderthal, but configured
in a different way.

(with-release [x (ge native-double 2 2 [0.3 0.9 0.3 0.9])

ones (vctr native-double 1 1)

layer-1 (fully-connected native-double tanh! 2 4)

a-1 (ge native-double 4 2)

layer-2 (fully-connected native-double sigmoid! 4 1)

a-2 (ge native-double 1 2)]

(transfer! [0.3 0.1 0.9 0.0 0.6 2.0 3.7 1.0] (weights layer-1))

(transfer! [0.7 0.2 1.1 2] (bias layer-1))

(transfer! [0.75 0.15 0.22 0.33] (weights layer-2))

(transfer! [0.3] (bias layer-2))

(transfer (layer-2 (layer-1 x ones a-1) ones a-2)))

=>

#RealGEMatrix[double, mxn:1x2, layout:column, offset:0]

p ↓ ↓ q
→ 0.44 0.44

x y

The display of the result in this example has been modified a little.
Instead of doing a println as in the previous chapters, we transfer
the resulting matrix to main memory. As println is typically not used
in production code, transfer is more general and platform-agnostic way
to ensure that the output values survive the with-release scope.

Don’t forget that, in this example, we have used with-release

for all bindings, even the output a-2. I do this because the code should
support CPU and GPU. In the main memory releasing the data is of great
help, but it is optional in a REPL session, since the memory eventually
gets released by the JVM26. On the GPU, however, JVM can not do
anything. The underlying GPU buffer that is not released explicitly,
is not released at all until we release the whole context. Therefore,
get in the habit of always taking care of the lifecycle and release
all vectors, matrices and other structures as soon as possible.27

https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.native.html#var-native-double
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.native.html#var-native-float

gpu computing with cuda and opencl 45

28 If you are struggling to find the dif-
ference in these two printouts,
note that the first prints "double",
while the second prints "float".

During interactive sessions, we would like to see the result in
the REPL. But, how, if the data stored in the result that is being re-
turned (a-2) is released just the moment before it is about to be printed.
Here, the transfer method transfers the data from wherever it is
(main memory or GPU memory) to the equivalent object in the main
memory.

This particular network

We are going to run this code on different devices, so wrapping it
into a function might be a good idea. Note that we provide factory

as the argument, and everything else is general and the same for all
platforms!

(defn this-particular-network [factory]

(with-release [x (ge factory 2 2 [0.3 0.9 0.3 0.9])

ones (vctr factory 1 1)

layer-1 (fully-connected factory tanh! 2 4)

a-1 (ge factory 4 2)

layer-2 (fully-connected factory sigmoid! 4 1)

a-2 (ge factory 1 2)]

(transfer! [0.3 0.1 0.9 0.0 0.6 2.0 3.7 1.0] (weights layer-1))

(transfer! [0.7 0.2 1.1 2] (bias layer-1))

(transfer! [0.75 0.15 0.22 0.33] (weights layer-2))

(transfer! [0.3] (bias layer-2))

(transfer (layer-2 (layer-1 x ones a-1) ones a-2))))

We can call this function and instruct it to use double-precision
floating point computation on the CPU.

(this-particular-network native-double)

=>

#RealGEMatrix[double, mxn:1x2, layout:column, offset:0]

p ↓ ↓ q
→ 0.44 0.44

x y

It can use single-precision floating point computation, still on the CPU.28

(this-particular-network native-float)

=>

#RealGEMatrix[float, mxn:1x2, layout:column, offset:0]

p ↓ ↓ q
→ 0.44 0.44

x y

46 deep learning for programmers [sample 1.0.0]

29 https://developer.nvidia.com/

cuda-toolkit
30 We are showing the names-
pace requires in the code below,
but will skip that in the following
chapters.

31 https://clojurecuda.uncomplicate.

org

32 https://www.khronos.org/opencl/

33 https://clojurecl.uncomplicate.

org

CUDA on an Nvidia GPU

The same code, without changes, runs on the GPU! The only thing
that it needs, is the factory that sets it up with appropriate engines.

For engines based on Nvidia’s CUDA29 platform, we use functions
from uncomplicate.clojurecuda.core30 namespace to choose and set up
the GPU itself. We may have more than one graphics accelerator
in our system, and Neanderthal has to know which one to use.
with-default is a method that will choose the best device that you have,
and set it up automatically. There are more fine grained methods in
the ClojureCUDA31 library if you need more control.

(require

’[uncomplicate.clojurecuda.core :as cuda

:refer [current-context default-stream synchronize!]])

Next, we use the cuda-float constructor to create a factory whose
engines will use single-precision floating point computations in the de-
fault context and stream provided by ClojureCUDA. We may need more
than one factory for advanced computations.

(require ’[uncomplicate.neanderthal.cuda :refer [cuda-float]])

(cuda/with-default

(with-release [cuda-factory (cuda-float (current-context) default-stream)]

(this-particular-network cuda-factory)))

=>

#RealGEMatrix[float, mxn:1x2, layout:column, offset:0]

p ↓ ↓ q
→ 0.44 0.44

x y

OpenCL on an AMD GPU

In case you have an AMD or Intel GPU, you will not be able to work
with CUDA platform. For more universal coverage Neanderthal sup-
ports OpenCL32 which is an open platform equivalent to CUDA,
that supports all major hardware vendors: AMD, Intel, and even Nvidia.

Instead of ClojureCUDA, you’ll use ClojureCL33 to set up the exe-
cution environment. Other than a few differences in terminology, most
of the knowledge of parallel computing on the GPU is transferable
between CUDA and OpenCL.

(require

’[uncomplicate.neanderthal.opencl :refer [opencl-float]]

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://clojurecuda.uncomplicate.org
https://clojurecuda.uncomplicate.org
https://www.khronos.org/opencl/
https://clojurecl.uncomplicate.org
https://clojurecl.uncomplicate.org
https://developer.nvidia.com/cuda-toolkit
https://clojurecuda.uncomplicate.org/codox/uncomplicate.clojurecuda.core.html
https://clojurecuda.uncomplicate.org/codox/uncomplicate.clojurecuda.core.html#var-with-default
https://clojurecuda.uncomplicate.org/codox/uncomplicate.clojurecuda.core.html#var-with-default
https://clojurecuda.uncomplicate.org/
https://neanderthal.uncomplicate.org/codox/uncomplicate.neanderthal.cuda.html#var-cuda-float
https://clojurecuda.uncomplicate.org/
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-toolkit
https://clojurecl.uncomplicate.org/
https://www.khronos.org/opencl/

gpu computing with cuda and opencl 47

’[uncomplicate.clojurecl.core :as opencl

:refer [*context* *command-queue* finish!]])

(opencl/with-default

(with-release [opencl-factory (opencl-float *context* *command-queue*)]

(this-particular-network opencl-factory)))

=>

#RealGEMatrix[float, mxn:1x2, layout:column, offset:0]

p ↓ ↓ q
→ 0.44 0.44

x y

We can even mix CUDA and OpenCL

With Neanderthal, we can even combine code that partly runs on
an Nvidia GPU and partly on an AMD GPU. For performance reasons,
it is unlikely that we would do this often in "real" code. However,
we can do it for fun and learning. This example has been included
mainly to demonstrate how flexible Neanderthal and Clojure are.
This is something that we would struggle to do in competing plat-
forms!

(opencl/with-default

(cuda/with-default

(with-release [opencl-factory (opencl-float *context* *command-queue*)

cuda-factory (cuda-float (current-context) default-stream)

x (ge opencl-factory 2 2 [0.3 0.9 0.3 0.9])

ones-opencl (vctr opencl-factory 1 1)

layer-1 (fully-connected opencl-factory tanh! 2 4)

a-1 (ge opencl-factory 4 2)

a-1-cuda (ge cuda-factory 4 2)

ones-cuda (vctr cuda-factory 1 1)

layer-2 (fully-connected cuda-factory sigmoid! 4 1)

a-2 (ge cuda-factory 1 2)]

(transfer! [0.3 0.1 0.9 0.0 0.6 2.0 3.7 1.0] (weights layer-1))

(transfer! [0.7 0.2 1.1 2] (bias layer-1))

(transfer! [0.75 0.15 0.22 0.33] (weights layer-2))

(transfer! [0.3] (bias layer-2))

(layer-1 x ones-opencl a-1)

(transfer! a-1 a-1-cuda)

(transfer (layer-2 a-1-cuda ones-cuda a-2)))))

=>

#RealGEMatrix[float, mxn:1x2, layout:column, offset:0]

48 deep learning for programmers [sample 1.0.0]

34 The fastest CPU thing around. See more at
https://software.intel.com/en-us/

mkl
35 A Nvidia’s flagship gaming GPU
from 2017.
36 Tera (1012) Floating Point Operations
(per second).
37 This function is part of ClojureCUDA.
38 Read more about asynchronous
nature of GPU programming in an-
other book in this series, Interactive
GPU Programming with CUDA.

39 Note that this depends on both
the example and the hardware.

40 An older AMD’s flagship gam-
ing GPU from 2013.

p ↓ ↓ q
→ 0.44 0.44

x y

Micro benchmark

One aspect of GPU computing is how to do it at all. With Neanderthal,
ClojureCL and ClojureCUDA it is not that hard. Another question is:
is it worth the trouble?

Nvidia GTX 1080Ti

We are going to measure the same superficial example that we used
in previous chapters. The heavily-optimized native CPU engine backed by
Intel’s MKL34 computed one pass in 6 seconds. We hope that Nvidia’s
GeForce GTX 1080Ti35, at 11 TFLOPS36, will be able to do it much faster.

Please note the (synchronize!)37 call. GPU calls are asynchronous38,
and here we are making sure that we block the main thread and wait
for the computation to complete before we declare victory.

(cuda/with-default

(with-release [factory (cuda-float (current-context)

default-stream)]

(with-release [x (ge factory 10000 10000)

ones (entry! (vctr factory 10000) 1)

layer-1 (fully-connected factory tanh! 10000 5000)

a1 (ge factory 5000 10000)

layer-2 (fully-connected factory sigmoid! 5000 1000)

a2 (ge factory 1000 10000)

layer-3 (fully-connected factory sigmoid! 1000 10)

a3 (ge factory 10 10000)]

(time

(do

(layer-3 (layer-2 (layer-1 x ones a1) ones a2) ones a3)

(synchronize!))))))

"Elapsed time: 122.529925 msecs"

122 milliseconds. It is well worth the trouble! This is roughly
50 times faster than the optimized engine on my CPU!39

AMD R9 290X

The computer that this book was written on also hosts an AMD GPU,
R9 290X,40 which has the theoretical peak performance of 5 TFLOPS.

https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://clojurecl.uncomplicate.org/
https://clojurecl.uncomplicate.org/
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#GeForce_10_series
https://clojurecuda.uncomplicate.org/codox/uncomplicate.clojurecuda.core.html#var-synchronize.21
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units#Radeon_R5/R7/R9_200_Series
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units#Radeon_R5/R7/R9_200_Series

gpu computing with cuda and opencl 49

(opencl/with-default

(with-release [factory (opencl-float *context* *command-queue*)]

(with-release [x (ge factory 10000 10000)

ones (entry! (vctr factory 10000) 1)

layer-1 (fully-connected factory tanh! 10000 5000)

a1 (ge factory 5000 10000)

layer-2 (fully-connected factory sigmoid! 5000 1000)

a2 (ge factory 1000 10000)

layer-3 (fully-connected factory sigmoid! 1000 10)

a3 (ge factory 10 10000)]

;; The first time a BLAS operation is used in OpenCL

;; might incur initialization cost. Warm up the engine.

(layer-1 x ones a1)

(finish!)

(time

(do

(layer-3 (layer-2 (layer-1 x ones a1) ones a2) ones a3)

(finish!))))))

"Elapsed time: 330.683851 msecs"

This is roughly 3 times slower than Nvidia. It is still worth the ef-
fort, since it is almost 20 times faster than the CPU.

Someone may be disappointed by this not being close enough to GTX 1080Ti’s
speed, since R9 290X should be twice as slow by the specifications
(5 TFOPS vs 11 TFLOPS). Instead of Nvidia’s proprietary BLAS matrix
routines, Neanderthal uses an open-source engine in its OpenCL back-
end. Although it’s not that much behind, it can not match Nvidia’s
hardware optimizations at the same level. When we have an Nvidia’s GPU,
we can still use ClojureCL but if we need maximum performance,
we should use ClojureCUDA.

A laconic performance comparison

Let us sum this up. In this example, we managed to accelerate
a top-performance CPU code by 20 times with an old AMD GPU,
and 50 times with a fairly recent, but not the best, Nvidia GPU, keep-
ing the same code!

https://clojurecl.uncomplicate.org/
https://clojurecuda.uncomplicate.org/

Learning

Gradient descent and backpropagation

The forward pass

The activation and its derivative

The backward pass

A simple neural networks API

Inference API

Training API

Initializing weights

Regression: learning a known function

By now, we have created the infrastructure that supports the basic
task of supervised learning of something. It is not particularly sophis-
ticated yet, and there are lots of techniques that we must support be-
fore it becomes useful in real-world scenarios. However, what we have is
complete enough and simple enough that it offers a great opportunity
for simple demonstration aimed at gradual understanding.

Neural networks approximate functions

When we step over the hype, what neural networks do is they approx-
imate functions. Neural networks learn to do that based on a lot of
examples taken out from the function’s output. In real use cases neu-
ral networks learn to approximate functions that are black boxes.

The key ability of neural networks is that they approximate un-
known functions. When we know a set of rules that transfer inputs
to outputs, we can think of many ways of implementing that in pro-
gramming languages, and all these ways are more efficient than
using neural networks. When we don’t know the process that trans-
fers the inputs to the outputs, we cannot program it explicitly. If the
process is known, but the rules are numerous, and it is not feasible
to elicit them, that could be hard to implement, too.

A typical example familiar to programmers would be an expert sys-
tem. Expert systems were a promising area of AI several decades ago.
The idea is to find human experts for a certain area, help them define
the rules she is using when making some decisions, program there rules
in fancy DSLs with if/then/else flavor, and profit. It turns out that ex-
pert’s time is expensive. Also, experts use lots of intuition; some rules
work, but not always, with lots of ’however’s. On top of that, due to
the probabilistic nature of life, we cannot always rely even on the rules
that we can define.

Let’s say that we would like to analyze traffic of a website to defend
against malicious visitors. We consulted with an expert, and he told us
most of the known ways of detecting these. We implement some filters.
If the user is from this range of IP addresses, if he uses a web browser

70 deep learning for programmers [sample 1.0.0]

with a certain user agent, if he comes via a proxy, if. . . Lots of rules
are possible, and they would filter a lot of unwanted traffic. They would
also filter some wanted traffic. But, most importantly, the attackers
know these rules, too, and they can easily adapt their strategy.

The approach that neural networks take is implicit. If we feed past
data to the network, and label good and bad visitors, without saying
why the good are good and the bad are bad the network can figure out
how to recognize them on its own. Even better, it can deal with the
traffic that it has never seen. Of course, it may not do it perfectly,
but it can learn this sort of stuff well enough.

To summarize, when we have lots of input/output examples, we can
train a neural network to approximate the unknown function that pro-
duced these examples.

The example that we use in this chapter is something less am-
bitious than website traffic filtering. We are going to train a neural
network on a known function. It is obvious that neural networks are
not the right tool for that job, since it is much easier and precise to
code the function in Clojure right away. It is a great first example,
though, since it makes it possible to easily see what the network
is doing.

Generating artificial data

Since we are simulating the data, we know the exact function that
produces it. We use the function f (x) = sin(x0) + cos(x1) + tanh(x2) +

x3
2 as an easy example.
The implementation is straightforward. The function takes a Ne-

anderthal vector as an input, and calculates a number according
to the formula shown above.

(defn my-fn ^double [xs]

(+ (math/sin (real/entry xs 0))

(math/cos (real/entry xs 1))

(math/tanh (real/entry xs 2))

(math/sqr (real/entry xs 3))))

Here’s the function in action. I give it a vector, an it returns the
resulting number.

(my-fn (vctr native-float [0.3 0.1 0.9 0.33]))

=> 2.1157222504237048

Now we need lots of data that comes from this function. We would like
if this data represented some domain well, so we are going to generate
a lot of random vectors. We use the rand-uniform function to populate

regression: learning a known function 71

a matrix with 10000 examples. If you are wondering why we jumped from
talking about vectors to populating a matrix, remember that the columns
of a matrix are vectors. It is more efficient to work with a bunch of
vectors tightly grouped in a matrix, than to keep them in a Clojure
sequence.

(rand-uniform! (ge native-float 4 10000))

=>

#RealGEMatrix[float, mxn:4x10000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.93 0.99 ∵ 0.94 0.01

→ 0.97 0.07 ∵ 0.18 0.80

→ 0.75 0.68 ∵ 0.43 0.99

→ 0.36 0.05 ∵ 0.82 0.28

x y

The columns of this matrix are the inputs that we are feeding to the
function that generates the "fake" data.

(map my-fn (cols (rand-uniform! (ge native-float 4 10))))

=>

(1.966033196798584 1.6873884768278673 1.6556626674078674

2.4881651136629275 1.9142285657995646 1.743036030649418

2.266988861373788 1.5932202841070968 1.85334784193748

2.139956338597604)

These are precise results calculated by the real, known, function
my-fn with the data provided in the matrix that we had generated.
The nice bonus of using a known function is that we can always
generate more data, either for learning or for testing. Do not forget
that in the real world, if the function is known, there is no need to learn
its approximation from data.

Learning to approximate

In the previous example, we have created 10 observations of the func-
tion’s output. There are data analysis methods that can learn some-
thing from such a small sample, but neural networks require more.
We just assume that 10 thousand observations is enough in this case,
but this is only an arbitrary chosen size. I hope this is going to be enough.

(def x-train (rand-uniform! (ge native-float 4 10000)))

x-train

72 deep learning for programmers [sample 1.0.0]

Figure 14: The 4-16-64-8-1 net-
work (an unwieldy diagram).

=>

#RealGEMatrix[float, mxn:4x10000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.06 0.01 ∵ 0.35 0.80

→ 0.24 0.10 ∵ 0.90 0.09

→ 0.40 0.74 ∵ 0.55 0.32

→ 0.33 0.55 ∵ 0.48 0.36

x y

(def y-train (ge native-float 1 10000 (map my-fn (cols x-train))))

y-train

#RealGEMatrix[float, mxn:1x10000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.52 1.94 ∵ 1.70 2.16

x y

We have generated 10 thousand observations and we know the
values of the function at these particular points, y-train. Then we
create a neural network consisting of five fully connected layers.

The input layer is the data matrix. Since each input vector has four
dimensions, the input layer will have four neurons. The hidden layers
have 16, 64, and 8 neurons, respectively. The activation functions are
sigmoid, tanh, and tanh, respectively. We have chosen these arbitrarily.
Not only that this is not the optimal choice, but we do not even have
a way to tell what the optimal architecture for any random function
would be. That’s one of the catches in neural networks, and many other
AI methods. Since the network should approximate a real-valued func-
tion the output will be one-dimensional.

(def inference (init! (inference-network

native-float 4

[(fully-connected 16 sigmoid)

(fully-connected 64 tanh)

(fully-connected 8 tanh)

(fully-connected 1 sigmoid)])))

(def training (training-network inference x-train))

Let us check whether the network seems to be properly initialized
before we run the learning algorithm.

(weights (first (layers inference)))

=>

#RealGEMatrix[float, mxn:16x4, layout:column, offset:0]

regression: learning a known function 73

p ↓ ↓ ↓ ↓ q
→ -0.20 -0.09 0.25 -0.01

→ -0.30 -0.13 -0.10 0.14

→ ∵ ∵ ∵ ∵
→ -0.42 0.01 0.19 0.02

→ -0.44 0.20 -0.15 0.01

x y

(weights (second (layers inference)))

=>

#RealGEMatrix[float, mxn:64x16, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ -0.01 0.06 ∵ 0.02 0.02

→ -0.00 -0.00 ∵ 0.07 0.11

→ ∵ ∵ ∵ ∵ ∵
→ 0.01 -0.00 ∵ 0.13 -0.10

→ -0.02 0.15 ∵ -0.04 -0.01

x y

(weights (last (layers inference)))

=>

#RealGEMatrix[float, mxn:1x8, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.06 0.25 ∵ -0.05 -0.01

x y

These matrices contain relatively small numbers around zero.
That seems right.

(sgd training y-train quadratic-cost! [[1 0.05] [1000 0.03] [100 0.01]])

(1.1418545755467493 0.6781750911065494 0.6780074343557965)

We run the algorithm for 1101 epochs with a few different learning
rates. These values were chosen arbitrarily; we had not known in ad-
vance whether they are a good, bad, or a mediocre choice. To see whether
the track we are on is any good, we have to rely on the value of the cost
function. What we can see from the result, the starting value was 1.14,
and it decreased to 0.68. This is not necessarily great, but it is a good sign.

The cost itself tells us only that the algorithm goes in the right
direction, we need a more direct way to see how well it works. What
is more familiar to a programmer than a unit test? Since we know the real
function, it is easy to compare its results with the results from the neu-
ral networks. We do not make it formal yet. We will just generate

74 deep learning for programmers [sample 1.0.0]

a few random observations that we will use for testing only. It is ex-
tremely important that the network does not see these observations during
training.

(def x-test (rand-uniform! (ge native-float 4 5)))

(def y-test (ge native-float 1 5 (map my-fn (cols x-test))))

Let’s see what the network says.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.00 1.00 1.00 1.00 1.00

x y

This does not look very useful. The network should have returned
something close to y-test values.

y-test

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.49 2.08 1.32 2.34 2.93

x y

Regression requires linear output

The network returned a vector of ones because the output activation
is the sigmoid function. Since the expected values are larger than 1,
the output is saturated. Sigmoid is often spotted in the output layer
of neural networks in various tutorials. That’s because most tutorials
start with classification examples, and often deal with classification
of photos. There, the network usually has as many output neurons as
there are categories that the output gets classified into, and it is ex-
pected that one neuron has a value close to one, while the others are
closer to zero. Here, however, we are doing a different kind of task,
regression.

In our case, there is only one neuron in the output, and it should di-
rectly return the value of the approximation. We do not want to mess up
with the signal at the output, and do not need to do any activation
there. Since we still need to fit that functionality into the existing
architecture, we create a kind of do-nothing activation, similar to
Clojure’s identity function. The derivative of this linear function
is the constant 1.

regression: learning a known function 75

(deftype LinearActivation []

Activation

(activ [_ z a!]

(copy! z a!))

(prime [this z!]

(entry! z! 1)))

(defn linear

([]

(fn [_] (->LinearActivation)))

([z!]

z!))

We fix the network and repeat the process.

(def inference (init! (inference-network

native-float 4

[(fully-connected 16 sigmoid)

(fully-connected 64 tanh)

(fully-connected 8 tanh)

(fully-connected 1 linear)])))

(def training (training-network inference x-train))

Checking the inference on the untrained network, we, unsurpris-
ingly, get useless answers.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.71 0.71 0.71 0.71 0.71

x y

One epoch later, we see that the cost is quite high.

(sgd training y-train quadratic-cost! 1 0.05)

=> 1.0261352330502589

We repeat the inference, only to see that the network has not
learned much, but it has changed.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

76 deep learning for programmers [sample 1.0.0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.01 1.01 1.01 1.01 1.01

x y

One epoch later, the cost decreased.

(sgd training y-train quadratic-cost! 1 0.05)

=> 0.6637627432927955

As expected, the inference is still bad.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.20 1.20 1.20 1.20 1.20

x y

Are 10 epochs enough to see some improvement?

(sgd training y-train quadratic-cost! 10 0.05)

=> 0.11728069185146087

Hooray, now the loss decreased 10 times! How’s the inference do-
ing?

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.96 1.96 1.96 1.96 1.96

x y

It does not seem to be any better. Let’s do a 100 epochs more.

(sgd training y-train quadratic-cost! 100 0.05)

=> 0.10831777675424309

The loss doesn’t seem to go much lower. The inference is still bad.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.06 2.06 2.06 2.06 2.06

x y

regression: learning a known function 77

Maybe the learning rate is too big. Let’s decrease it a bit.

(sgd training y-train quadratic-cost! 100 0.03)

=> 0.10831182885244489

The loss seems to stay at the same level, and the inference has not im-
proved.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.06 2.06 2.06 2.06 2.06

x y

This is puzzling. If the cost decreased, why the inference seems
to be as bad as with the untrained network? Well, the inference has
improved in some way. Although it is still quite bad for each particu-
lar example, and outputs are always near 2.06, it is closer on average
to true values than it was when all answers were 0.71.

We try with 1000 epochs, and yet lower learning rate.

(sgd training y-train quadratic-cost! 1000 0.01)

=> 0.10829182024434049

It has not helped at all.

(inference x-test)

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.07 2.07 2.07 2.07 2.07

x y

Maybe we need to vary the learning rate a bit. Let’s try that.

(sgd training y-train quadratic-cost! [[100 0.03][100 0.01][100 0.005][100 0.001]])

=>

(0.10828583755013534 0.10828376051097366 0.10828274862731632 0.10828255335206705)

We can see that, as the learning progresses, the cost stays roughly
the same, which means that the network just strolls around, but does
not progress much.

(inference x-test)

78 deep learning for programmers [sample 1.0.0]

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.07 2.07 2.07 2.07 2.07

x y

Before throwing the towel, canceling the book altogether, and ad-
mitting that we are useless without frameworks created by the Big Co.,
let us remember that the task that we are doing here is not classifi-
cation, when it is enough that the network learns to discriminate be-
tween a few, or several, discrete categories. Here we are doing regres-
sion, which is more difficult, since the network has to learn to approx-
imate the actual real value of the function. Also consider that we just
constructed a network with a random structure, and use the vanilla
gradient descent, without any advanced tricks. Maybe we need to give it
more time. Let us see what it can do with 40000 epochs worth of lessons.

(time (sgd training y-train quadratic-cost! 40000 0.05))

=>

"Elapsed time: 135905.426141 msecs"

0.0028870595858461454

Now the cost is significantly lower. It can be directly seen when we
test the inference.

(inference x-test)

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.51 1.97 1.40 2.48 2.99

x y

Right! Much closer to the real values. We can never expect to get
the exact floating point values that the real function is returning,
especially not with the test observations that the network hasn’t seen
during the learning phase, but the difference is within an acceptable
range.

(axpy! -1 y-test (inference x-test))

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.02 -0.12 0.08 0.14 0.05

x y

If we wanted to improve the approximation, we should proba-
bly train the network for longer. However, do not assume that more

regression: learning a known function 79

training leads to better approximation of unseen data. As the learn-
ing progresses, the network will generally decrease the cost, but after
some time, some local optimum is reached, and the cost may oscillate,
or even start to increase. There is no guarantee when or if the network
will reach some optimal state. Additionally, this cost is measured on
the training data.

Fortunately, we do not even want to decrease the cost too much.
As we will see in later chapters, this cost generally decreases with
more training, but the metric that is important is the cost measured
on the test or validation data, and this cost generally increases when
the network is overtrained.

In practice, that might indicate overfitting. The network that is opti-
mized for the training data too much, might work poorly on the data
that it hasn’t seen during the learning process, and this is exactly
the data that we want it to work well with.

These are high-level things to worry about. For now, it is enough
to see that our network works, and to get a feeling of how difficult the
task of training is. We needed a huge number of epochs to get accept-
able results, and may need even more to get something good. We have
a tight implementation, without much resource waste. Imagine how
long it would take with something that was less optimized.

GPU

On the CPU, this particular network took two minutes to learn
something useful. Since GPU can be order(s) of magnitude faster,
they should take only a few seconds. Right?

Nvidia GPU with CUDA

Let’s try with our CUDA-based implementation.

(cuda/with-default

(with-release [factory (cuda-float (current-context) default-stream)]

(with-release [cu-x-train (ge factory 4 10000)

cu-y-train (ge factory 1 10000)

inference (init! (inference-network

factory 4

[(fully-connected 16 sigmoid)

(fully-connected 64 tanh)

(fully-connected 8 tanh)

(fully-connected 1 linear)]))

training (training-network inference cu-x-train)]

(transfer! x-train cu-x-train)

(transfer! y-train cu-y-train)

80 deep learning for programmers [sample 1.0.0]

(time

(sgd training cu-y-train quadratic-cost! 40000 0.05)))))

"Elapsed time: 23251.819897 msecs"

0.0028752992499551057

23 seconds! Faster than on the CPU, but not as much as we hoped.
It is worth remembering that the size of the task have to be demanding
to see these orders of magnitudes in speedup. With relatively small
matrices, it’s good that the GPU engine was not even slower than the CPU!

AMD GPU with OpenCL

Our implementation for older AMD hardware and drivers had some per-
formance issues in earlier chapters.

(opencl/with-default

(with-release [factory (opencl-float *context* *command-queue*)]

(with-release [cl-x-train (ge factory 4 10000)

cl-y-train (ge factory 1 10000)

inference (init! (inference-network

factory 4

[(fully-connected 16 sigmoid)

(fully-connected 64 tanh)

(fully-connected 8 tanh)

(fully-connected 1 linear)]))

training (training-network inference cl-x-train)]

(transfer! x-train cl-x-train)

(transfer! y-train cl-y-train)

(finish!)

(time

(last (sgd training cl-y-train quadratic-cost! (repeat 40000 [1 0.05])))))))

"Elapsed time: 559357.909222 msecs"

=>

0.002766931535136348

This is terrible. It is even slower than the CPU. The reason is that
the engine is optimized for large matrices, and can not find a way to
saturate hardware potentials it has with such small chunks of data that
it’s being provided with.

Smaller is often better

We have seen that the brute force can help with efficiency, but eventu-
ally hits the wall. Since the architecture of the network was arbitrary,

regression: learning a known function 81

Figure 15: The 4-8-16-4-1 network.

maybe we can get better results with a smaller network. As we are
interested in experimenting with different sizes, we care only about
the cost, not the actual learned values. We use the engine that seems
to be the fastest with this task.

Let’s try a 4-8-16-4-1 network. Since it is smaller, we hope that
a smaller number of epochs would be enough.

(cuda/with-default

(with-release [factory (cuda-float (current-context) default-stream)]

(with-release [cu-x-train (ge factory 4 10000)

cu-y-train (ge factory 1 10000)

inference (init! (inference-network

factory 4

[(fully-connected 8 sigmoid)

(fully-connected 16 tanh)

(fully-connected 4 tanh)

(fully-connected 1 linear)]))

training (training-network inference cu-x-train)]

(transfer! x-train cu-x-train)

(transfer! y-train cu-y-train)

(time

(sgd training cu-y-train quadratic-cost! 4000 0.05)))))

"Elapsed time: 2049.335159 msecs"

=>

0.004670825056062358

4000 epochs took two seconds, and the error seems low enough to
indicate that the network leaned something.

Does it learn more in 40000 epochs? Not that much, it seems.

"Elapsed time: 20982.76644 msecs"

=>

0.003014854083318096

From this, we can conclude that although the GPU did not take less time
to compute these smaller layers, the learning algorithm itself got better
results since smaller space can be explored with fewer steps.

Let’s try the same code with an even smaller network: 2 hidden lay-
ers with 8 and 4 neurons.

"Elapsed time: 1527.71754 msecs"

=>

0.1007463554173708

What about changing the structure so the first hidden layer has 4 and
the second layer has 8 neurons?

82 deep learning for programmers [sample 1.0.0]

Figure 16: The 4-4-8-1 network.

Figure 17: The 4-8-8-1 network.

"Elapsed time: 1539.367704 msecs"

=>

0.004476395398100112

Lucky us, this 4-8 network can learn with similar cost as the larger 8-
16-4, or the much larger 16-64-8 networks.

Let’s try this small network with OpenCL.

(opencl/with-default

(with-release [factory (opencl-float *context* *command-queue*)]

(with-release

[cl-x-train (ge factory 4 10000)

cl-y-train (ge factory 1 10000)

inference (init! (inference-network

factory 4

[(fully-connected 4 sigmoid)

(fully-connected 8 tanh)

(fully-connected 1 linear)]))

training (training-network inference cl-x-train)]

(transfer! x-train cl-x-train)

(transfer! y-train cl-y-train)

(finish!)

(time

(last (sgd training cl-y-train quadratic-cost! (repeat 4000 [1 0.05])))))))

"Elapsed time: 27948.357329 msecs"

=>

0.09556360326748764

We expect the CPU engine to work particularly well with these small net-
works, since it doesn’t rely on parallelization that much.

(def inference-881 (init! (inference-network

native-float 4

[(fully-connected 8 sigmoid)

(fully-connected 8 tanh)

(fully-connected 1 linear)])))

(def training-881 (training-network inference-881 x-train))

(time (sgd training-881 y-train quadratic-cost! 4000 0.05))

"Elapsed time: 2920.363189 msecs"

=>

0.0047413169616575485

Let’s test the inference of this 4-8 network trained during 4000 epochs.

(inference-881 x-test)

regression: learning a known function 83

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.51 2.02 1.36 2.46 2.85

x y

y-test

=>

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 2.49 2.08 1.32 2.34 2.93

x y

Finally, let’s compare the network’s answers with the known out-
puts of the known function it approximates.

(axpy! -1 y-test (inference-881 x-test))

#RealGEMatrix[float, mxn:1x5, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.02 -0.06 0.05 0.13 -0.08

x y

It is acceptable, at least for these baby steps. Most approximated
values are within a few percent of the real values for the examples
in the test set that the network has never seen before.

The first milestone

After quite a few chapters we have created an implementation that is
complete enough to be used for demo purposes. Depending on whether
we expected a miracle, or we had already known how difficult are the
problems that machine learning is applied to, we might be under-
impressed or we might be jumping from joy right now.

The bottom line is that our implementation works quite efficiently,
but is not as effective as we would like it to be. Since we can be quite
confident that the code we wrote is quite tight, it is time to see whether
we can improve the algorithm itself.

As we identified that the algorithm is fragile in regards to actual
weight values, it makes sense to implement a way to keep them in check,
so they stay in a zone where the gradient descent can progress well.
We have also seen that the algorithm can spend a lot of time chasing
local optimums. It may be a good idea if we can improve it to jump
over pebbles and boulders in search for the valleys, and stop only
in front of mountain peaks.

84 deep learning for programmers [sample 1.0.0]

We will implement a few obvious improvements to the gradient de-
scent that could be said to work well universally, and then we will re-
visit this same example for comparison. After we address the low hang-
ing fruit, we may even try to learn some useful things from some real data,
instead of playing with simulations.

Training optimizations

Weight decay

Momentum and Nesterov momentum

Adaptive learning rates

Regression: Boston housing prices

Dropout

Stochastic gradient descent

41 This example is often used in tutori-
als, and is also used in the Deep Learn-
ing for Python book, which makes it con-
venient for comparisons.

42 It can be downloaded from Kag-
gle or elsewhere.

Classification: IMDB sentiments

Classification is another canonical machine learning task. While re-
gression approximates the exact real value of the output, classification
tries to categorize the output. The exact value of the output signal
is not important, as long as the output is properly associated with
one among two or more discrete classes.

That task seems to be easier than regression. Even if the output
signal has a huge error, the category may be well chosen. On the other
hand, if the signal is somewhere along the border between two cate-
gories, even if it is very precise, small differences may cause that it ends
up in the wrong class.

While we might tolerate less precision in regression, we often leave
much less space for miss-classification. Even if a software system
classifies cars well for thousands of times, one error of classifying
a car as a pedestrian could lead to a disaster.

A nice and popular example to introduce classification with neural
networks is sentiment analysis of movie reviews.41

The IMDB sentiments dataset

Internet Movie Data Base (IMDB) provides extensive info about many
forms of moving pictures, including user-contributed movie reviews.
There is a freely available42 data set of 100,000 reviews split into
the train and test part.

Let’s explore the structure of this data set, which is available
in CSV format. We read the file that contains all 100,000 rows, but
take only the first two.

(->> (io/resource "imdb-sentiment/imdb_master.csv")

(slurp)

(csv/read-csv)

(take 2))

There are only 5 columns: id, type, review, label, file.

(["" "type" "review" "label" "file"]

100 deep learning for programmers [sample 1.0.0]

43 For the sake of argument, we ig-
nore that Java strings use unicode.

["0"

"test"

"Once again Mr. Costner has dragged out a movie for far longer than necessary.

Aside from the terrific sea rescue sequences, of which there are very few I just

did not care about any of the characters. Most of us have ghosts in the closet,

and Costner’s character are realized early on, and then forgotten until much later,

by which time I did not care. The character we should really care about is a very

cocky, overconfident Ashton Kutcher. The problem is he comes off as kid who thinks

he’s better than anyone else around him and shows no signs of a cluttered closet.

His only obstacle appears to be winning over Costner. Finally when we are well

past the half way point of this stinker, Costner tells us all about Kutcher’s

ghosts. We are told why Kutcher is driven to be the best with no prior inkling

or foreshadowing. No magic here, it was all I could do to keep from turning it

off an hour in."

"neg"

"0_2.txt"])

We immediately see that only two fields are relevant for each re-
view: the text of the review, and its label, which is a binary value; it can
be neg or pos.

Figuring out how to teach NNs with the IMDB dataset

It is intuitively clear to us what this data mean; there is some text,
and there is the expected sentiment value attached to that text, either
positive or negative. We should put the text of each review at the
input, and the network has to produce the sentiment value at its
output.

The output should not be an issue. Assuming that the output is a
number, we can easily devise a scheme that translates numbers above
threshold with pos, and those below with neg, or something along
these lines.

The problem, though, is that the network expects numbers at the
input, while we just have a free-form text. We have to find a meaning-
ful way to encode a string of variable length to a vector of fixed length,
which is the only thing that neural networks can accept at the input.

We could try to utilize the fact that each character can be treated
as its ASCII value.43 This does not solve the issue that the result-
ing vector of numbers has variable length. More important flaw, though, is that
this sequence of numbers is not very meaningful. Characters a and b

are next to each other, while a and z are quite far away, but this dis-
tance does not have much to do with how words are formed, yet alone
with the sentiment of the whole paragraph.

There are two straightforward ways to turn these strings into vec-

classification: imdb sentiments 101

44 Word embeddings are dense, low-
dimensional representations of text
that would require a bit more explana-
tion that is out of scope of this book.

45 Naturally, if we wanted to seri-
ously work with textual input,
we should have explored specialized
techniques, including word embed-
dings.

tors. Both of these encode words instead of single characters.
We can index each word, encode strings as variable lists of num-

bers, pad these lists so that they have the same length, and convert
them to vector inputs. These inputs are not straightforward, but re-
quire a special layer at the network input to learn word embeddings.44

Alternatively, we could use one-hot encoding, a simpler sparse rep-
resentation. One-hot encoding uses a large vector, where each word has an
index, and the value of that index is 1 when the word is present in the
text, and 0 when not. This method can only encode a finite number of
chosen words, in a crude binary manner.

One-hot encoding’s crudeness is a great opportunity to show how
neural networks can make use of even when minimal effort is spent
on preparing an unsophisticated input.45

Implementing one-hot encoding for the IMDB dataset

If the chosen dimension of the input is 10,000, we should choose
10,000 words that we will use. The most convenient way is to scan
all reviews, count the frequencies of all words, and choose the most
popular 10,000 words. Each word is represented by a specific position
in the vector. For example, the word "car", which is surely frequent
enough to make it to the top 10K, might be at position 325. Then, we
scan the reviews again and set the values at the appropriate indexes
to 1. Such input can be used by plain dense layers that we have devel-
oped.

There is no need to use specialized data frame libraries for this task,
since plain Clojure is quite powerful and can give us a pretty good run
for our money. Let’s explore the partial steps first.

The first review is in the second row, after the header. We extract
it to its own var and use it as an example.

(def costner-review (second *1))

The first task is to split the review string into the constituent
words. We use the split function and get the vector of words.

(string/split (costner-review 2) #" ")

;; This output is truncated to first 10 words

["Once" "again" "Mr." "Costner" "has" "dragged" "out" "a" "movie" "for" ...]

Right away, we can create a function that, given a review, discards
the irrelevant fields, and creates a vector of the relevant ones, includ-
ing the split review.

(defn split-review [review]

102 deep learning for programmers [sample 1.0.0]

(vector (review 1) (string/split (review 2) #" ") (review 3)))

(split-review costner-review)

["test"

["Once" "again" "Mr." "Costner" "has" "dragged" "out" "a" "movie" "for" ...]

"neg"]

Finding the 10,000 most frequent words

To find the most frequent words in the whole dataset, we should be
able to find the frequency of each word in the split review. Clojure’s
frequencies function can already find the frequencies of all values in
a sequence. We can use it as-is since we already keep the words in a
vector, which satisfies the sequence abstraction.

(frequencies (string/split (costner-review 2) #" "))

{"else" 1,

"Kutcher’s" 1,

"us" 2,

"signs" 1,

"driven" 1,

"him" 1,

"Mr." 1,

"are" 4,

"Kutcher" 1,

...}

We should accumulate these frequencies across the reviews. We cre-
ate the read-imdb-master function, and use it to load the first 100 re-
views that we will use in experimenting. Loading the whole sequence
would take a few more seconds than necessary. It could be argued that
we could load and parse all 100,000 rows, and store the sequence in
a var to reuse. That would use a few hundred of megabytes, which is
not a problem for contemporary desktop computers. However, it could
be a problem when working with larger data sets.

Clojure sequences are lazy, which means that they can process
infinite sequences, since they use memory only for entries that are
currently processed. That functionality strictly forbids from storing
references of the head of the sequence, since then the garbage collec-
tor cannot release the elements that have been processed.

In this exploratory example, we have this in mind even though sup-
porting infinite data sets is not necessary.

(defn read-imdb-master

classification: imdb sentiments 103

([]

(->> (io/resource "imdb-sentiment/imdb_master.csv")

(slurp)

(csv/read-csv)

(drop 1)))

([cnt]

(take cnt (read-imdb-master))))

(def first-100-reviews (pmap split-review (read-imdb-master 100)))

The word-frequencies function computes the frequencies of all
reviews, and then merges adds up all results by merging.

(defn word-frequencies [reviews]

(apply merge-with + (pmap #(frequencies (% 1)) reviews)))

This function returns the frequencies of all words, and we can
quickly check whether it works at all by taking a frequency of a com-
mon word.

(get (word-frequencies first-100-reviews) "is")

The word "is" seems to be present 327 times in the first 100 reviews,
which seems about right.

=> 327

Printing all resulting words would clutter this page, but we can
at least check how many of them there are.

(count (word-frequencies first-100-reviews))

The first 100 reviews contain 5978 distinct words.

5978

Checking how many distinct words are contained when all reviews
are taken into account might be a nice and easy exercise. The result
should be 696068.

We could use all 696068 words in the analysis. Uncommon words
in the long tail would not help with learning, while they still require
one additional dimension per word. We are going to use the 10,000

words that appear most frequently.
Once we have computed the frequencies of all words, we can sort

them by popularity using Clojure’s built in functions, and just take
a desired number of the most frequent ones. In the following example,
we are taking 10 most frequent words from first 100 reviews.

104 deep learning for programmers [sample 1.0.0]

(take 10 (sort-by val > (word-frequencies first-100-reviews)))

Unsurprisingly, the most popular words are "the", "a" etc. This
gives us a hint that it could be a good idea to exclude the most pop-
ular words from our analysis as well. On the other hand, neural net-
works can learn to ignore features that are not important, so we are go-
ing to skip any clever data preparation that is not absolutely neces-
sary.

(["the" 1060]

["a" 561]

["of" 521]

["and" 520]

["to" 488]

["is" 327]

["in" 308]

["I" 235]

["this" 227]

["that" 223])

Once we ordered the words by popularity, we can discard the
frequencies, and just keep the sequence of words. From each vector
[word frequency] we need the element at the index 0. We codify
our recent experiments into a reusable word-vec function.

(defn word-vec [reviews cnt]

(->> (word-frequencies reviews)

(sort-by val >)

(map #(% 0))

(take cnt)

(into [])))

We repeat the same experiment using this convenient function.

(word-vec first-100-reviews 10)

["the" "a" "of" "and" "to" "is" "in" "I" "this" "that"]

Encoding reviews

When we have a list of words in a review, we have to encode it; mean-
ing we have to flip the value at the index of each word in the vector
that represents the review from 0.0 to 1.0. Given the word "this", for
example, we have to know that its index is 8.

If we only had the list of the words, we would have to scan it each
time to find that index, which would be comically inefficient. A way
to avoid this problem is to build a hash-map dictionary that quickly

classification: imdb sentiments 105

finds the index of any word, or answers with nil if a word is not
present in the dictionary.

This is simple to do with plain Clojure functions. We create the
word-map function which, given a Clojure vector of words, builds a hash-
map of their indices.

(defn word-map [word-vector]

(into {} (map #(vector (word-vector %) %) (range (count word-vector)))))

Let’s test it with the 10 most frequent words from the first 100 re-
views.

(word-map (word-vec first-100-reviews 10))

{"of" 2,

"this" 8,

"is" 5,

"that" 9,

"a" 1,

"and" 3,

"I" 7,

"to" 4,

"the" 0,

"in" 6}

The encoded IMDB dataset

We are now ready to encode the entire dataset into the final shape
that can be consumed by neural networks. We create the Clojure vec-
tor of 10,000 most frequent words into wvec, and we build the match-
ing hash-map of indices wmap.

(def wvec (word-vec (pmap split-review (read-imdb-master)) 10000))

(def wmap (word-map wvec))

We create the encompassing function encode-review, which, given a
word-map, and the review in the [_ words sentiment] format, handles
the review as we have discussed in detail, and populates the appropri-
ate places in the input vector x and the output vector y, which will be
consumed by the network

(defn encode-review [word-map review x y]

(let [[_ words sentiment] (split-review review)]

(doseq [idx (map word-map words)]

(when idx (entry! x idx 1.0)))

(entry! y 0 (case sentiment "neg" 0 "pos" 1)))

x)

106 deep learning for programmers [sample 1.0.0]

We demonstrate how it works on the first review, costner-review.
The input vector is a 10,000 dimensional vector, and the output is a
vector that has one entry, which is going to be 0 when sentiment is "neg",
and 1 when the review sentiment is "pos", when encoded.

(def costner-code (encode-review wmap costner-review (fv 10000) (fv 1)))

=>

#RealBlockVector[float, n:10000, offset: 0, stride:1]

[1.00 1.00 1.00 0.00 0.00]

Even though we do not need to decode this vector, it is a good idea
to write the decode-review function, which we could use for testing.
The last thing we need now is that we feed our network training pro-
cess with garbled data.

(defn decode-review [word-vec code-vec]

(filter identity

(map #(if (< 0.5 (entry code-vec %))

(word-vec %)

nil)

(range (dim code-vec)))))

(decode-review wvec costner-code)

It seems that the result makes sense.

=>

;; truncated output

("the" "a" "and" "of" "to" "is" "in" "I" "this" "it" "was" "as" "with" "for" "The"

"movie" "are" "have" "not" "be" "by" "he" "an" "from" "who" "all" "has" "just" "or"

"about" "out" "very" "when" "only" "really" "which" "no" "than" "there" "much" "time"

"we" "could" "do" "any" "him" "then" "way" "well" "character" ...)

Finally, we automate the whole procedure in the encode-review

function. It takes the map of word indexes and all reviews, create
the appropriate input and output matrices, whose columns are vectors
of the appropriate dimensions, 10,000 and 1, and have 25,000 rows,
one per each review.

(defn encode-reviews [wmap reviews]

(let-release [in (fge 10000 25000)

out (fge 1 25000)]

(doall (map #(encode-review wmap %1 %2 %3) reviews (cols in) (cols out)))

[in out]))

We only use 50,000 reviews of the 100,000 that are available, since
only the first half has the pos and neg sentiments recorded. When
doing this at home, do not forget to shuffle the data, which is required
for the stochastic gradient descent algorithm that we use.

classification: imdb sentiments 107

(def data (doall (map #(encode-reviews wmap (shuffle %))

(split-at 25000 (read-imdb-master 50000)))))

([#RealGEMatrix[float, mxn:10000x25000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.00 1.00 ∵ 1.00 1.00

→ 1.00 1.00 ∵ 1.00 1.00

→ ∵ ∵ ∵ ∵ ∵
→ 0.00 0.00 ∵ 0.00 0.00

→ 0.00 0.00 ∵ 0.00 0.00

x y
#RealGEMatrix[float, mxn:1x25000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.00 1.00 ∵ 1.00 0.00

x y
] [#RealGEMatrix[float, mxn:10000x25000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 1.00 1.00 ∵ 1.00 1.00

→ 1.00 1.00 ∵ 1.00 1.00

→ ∵ ∵ ∵ ∵ ∵
→ 0.00 0.00 ∵ 0.00 0.00

→ 0.00 0.00 ∵ 0.00 0.00

x y
#RealGEMatrix[float, mxn:1x25000, layout:column, offset:0]

p ↓ ↓ ↓ ↓ ↓ q
→ 0.00 1.00 ∵ 1.00 1.00

x y
])

We give convenient names to these two pairs of input and output
matrices.

(def x-test ((first data) 0))

(def y-test ((first data) 1))

(def x-train ((second data) 0))

(def y-train ((second data) 1))

Training the network

Finally, we are ready to train the network, which, compared to the
preparation effort, seems almost trivial! We choose the 10000-16-16-1
network architecture with relu activations, and mini-batch size of 512,
following popular resources that use this example.

(def x-minibatch (ge x-train (mrows x-train) 512))

108 deep learning for programmers [sample 1.0.0]

46 Considerably faster than mainstream
libraries such as TensorFlow or Py-
Torch!

(def inference (inference-network native-float 10000

[(fully-connected 16 relu)

(fully-connected 16 relu)

(fully-connected 1 sigmoid)]))

(init! inference)

We use the sigmoid activation at the output, not the linear acti-
vation, because we are doing classification, and would like to have
output between 0 and 1, which can be easily transformed into neg

and pos.
To be able to measure the accuracy of the network output, we create

the function that rounds the output to 0 or 1, and compares it with
the expected values.

(defn binary-accuracy!

([y a!]

(- 1.0 (/ (asum (axpy! -1.0 y (round! a!))) (dim y)))))

When we apply this function to the untrained network, we expect
that it is not more accurate than pure chance.

(binary-accuracy! y-test (inference x-test))

The accuracy is 0.5, just as we have expected.

=> 0.5

We create a training network with Adam layers, and train it for
20 epochs.

(def adam (training-network inference x-minibatch adam-layer))

(time (sgd-train adam x-train y-train quadratic-cost! 20 []))

"Elapsed time: 5376.243553 msecs"

=> 0.02493325881067765

The network achieved low cost, indicating that the training went
well, achieving excellent performance.46

Let’s test the accuracy of this network on the test data.

(binary-accuracy! y-test (inference x-test))

The network’s accuracy is 88%.

=> 0.88324

classification: imdb sentiments 109

47 Quadratic cost function, for reference.

C(w, b) ≡ 1
2n ∑

x
‖yx − ax‖2 (7)

48 The derivative of the sigmoid func-
tion, for reference.

σ′ =
dσ

dx
= σ(x)(̇1− σ(x)) (8)

This is in line with the results achieved by the same network built
with mainstream technologies.

Maybe we could improve the test cost by using Dropout.

(def adam-dropout (dropout adam))

(init! inference)

(time (sgd-train adam-dropout x-train y-train quadratic-cost! 20 [[0.005 0.0005]]))

"Elapsed time: 6246.483023 msecs"

=> 0.06372851434459736

(binary-accuracy! y-test (inference x-test))

The accuracy is roughly the same.

=> 0.87652

How does RMSprop stand in comparison to Adam?

(def rmsprop (training-network inference x-minibatch rmsprop-layer))

(init! inference)

(time (sgd-train rmsprop x-train y-train quadratic-cost! 20 [0.001 0.9]))

"Elapsed time: 5147.082232 msecs"

=> 0.013999668986643066

(binary-accuracy! y-test (inference x-test))

=> 0.87588

It seems that 88% is the limit for this network architecture. This
is in line with the results reported by other literature. For this partic-
ular problem, the state of the art, achieved by more complex meth-
ods specialized for this purpose is 95%. Consider the fact that neu-
ral networks achieved slightly worse accuracy with no particular
specialization, practically automatically.

Cross-entropy cost function

Sigmoid activation function that we use at the output layer saturates
when the output is close to 0.0 or 1.0. This causes the derivative of
quadratic cost to change very little when the network is wrong, and
the learning progresses slowly. Regression with linear output does not
have this problem, since linear output does not saturate.

In the sigmoid activation with quadratic cost47 combination, the
gradient with respect to weights depends on the derivative of sig-
moid48.

110 deep learning for programmers [sample 1.0.0]

49 We skip the complete calculation,
which you can find in Michael Nielsen’s
Neural Networks and Deep Learning book.

δL = ∇aC� σ′(zL) (9)

However, when σ is saturated, σ′ becomes close to 0, which makes δL

close to zero.
Our example proved that the network can in fact learn well even

though quadratic cost function is not an ideal match for the sigmoid
activation. The theory proves that this causes issues, which we did not
encounter because we have created a quite robust training infrastruc-
ture. However, we must solve this problem if we would like our soft-
ware to work well with more challenging classification problems.

The right match for the sigmoid output is the Cross-entropy cost
function.

C(w, b) =
1
n ∑

x
[yx ln ax + (1− yx) ln (1− ax)] (10)

It is not immediately obvious why this function is a good choice,
or why it is acceptable as a cost function at all. It is acceptable be-
cause it is non-negative, and it is close to 0 when the neuron’s out-
put is close to the target value. Why is it better than quadratic cost,
when the formula for δL includes σ′ in both cases? Seeing how the
error looks like will help us understand why.49

δL =
(σ(z)− y)� σ′(z)
σ(z)� (1− σ(z))

=
σ′(z)� (σ(z)− y)

σ′(z)
= σ(z)− y (11)

The σ′ term cancells, and the error in the last layer only depends on
the σ function, not on the problematic value of σ′, which is near zero
when the activation is saturated.

The quadratic cost function has been constructed so that, when
combined with the sigmoid activation, the problematic term disap-
pears. With some other activation function, this nice optimization
would not work.

We have to change our infrastructure a bit before we use the follow-
ing implementation of the sigmoid-crossentropy-cost! function.

(defn sigmoid-crossentropy-cost!

([y a]

(with-release [ylna (mul! (log a) y)

y-1 (linear-frac 1.0 y -1.0)]

(/ (real/asum (axpy! -1.0 ylna

(mul! y-1 (log! (linear-frac! -1.0 a 1.0)))))

(ncols y))))

([activ-fn z! y a]

(if (instance? SigmoidActivation activ-fn)

(axpy! -1.0 y (copy! a z!))

classification: imdb sentiments 111

(dragan-says-ex "This crossentropy implementation can only be used with sigmoid activation."

{:activ-fn-type (type activ-fn)}))))

The optimization works only when the sigmoid activation is used
with the crossentropy cost. Additionally, the cost calculation up to now
assumed that the input argument is y-a, which was enough for calcu-
lating the quadratic cost, while crossentropy needs both y and a. Fi-
nally, this optimization should be applied only in the last layer; the for-
mula in the hidden layers does not care how the gradient that comes from
the upper layers are calculated. To support this, we can extract the
backward-error function from the backward-error function, and call
it at appropriate times.

Here is the relevant part of NeuralNetworkTraining.

Backprop

(forward [_ hyperparam]

(doseq [layer forward-layers]

(forward layer hyperparam))

(output last-layer))

(backward-error [_]

(backward-error last-layer))

(backward-error [_ cost! y]

(backward-error last-layer cost! y))

(backward [_ hyperparam]

(backward last-layer hyperparam)

(doseq [layer backward-layers]

(backward-error layer)

(backward layer hyperparam)))

FullyConnectedAdam and FullyConnectedRMsprop have to be adapted
accordingly.

Backprop

(forward [_ _]

...)

(backward-error [_]

(mul! (prime activ-fn z) a))

(backward-error [_ cost! y]

(cost! activ-fn z y a))

(backward [_ [t eta lambda rho1 rho2 epsilon]]

(let [...]

(mm! (/ 1.0 (dim ones)) z (trans a-1) 0.0 g)

...))

Updating the existing infrastructure is a good way to see whether
you grasp well the implementation we have covered so far.

112 deep learning for programmers [sample 1.0.0]

Training the network (again)

Although the implementation slightly changed, we still support
the existing API.

(def x-minibatch (ge x-train (mrows x-train) 512))

(def inference (inference-network native-float 10000

[(fully-connected 16 relu)

(fully-connected 16 relu)

(fully-connected 1 sigmoid)]))

(init! inference)

(def adam (training-network inference x-minibatch adam-layer))

(time (sgd-train adam x-train y-train sigmoid-crossentropy-cost! 20 []))

"Elapsed time: 5344.798563 msecs"

=> 0.20265182852745056

(binary-accuracy! y-test (inference x-test))

=> 0.88236

There is no significant advancement. It seems that 88% is the ceil-
ing for this basic network. This is actually a great result; our home-
grown software matches mainstream tools in accuracy, while be-
ing much simpler and faster!

Doing it on the GPU

The same code should work on the GPU. Is it reasonable to expect
it to be faster, since the dimension of the minibatch is 10,000 × 512?

(cuda/with-default

(with-release [factory (cuda-float (current-context) default-stream)]

(with-release [cu-x-train (ge factory 10000 25000)

cu-y-train (ge factory 1 25000)

cu-x-minibatch (ge factory 10000 512)

inference (init! (inference-network

factory 10000

[(fully-connected 16 relu)

(fully-connected 16 relu)

(fully-connected 1 sigmoid)]))

adam (training-network inference cu-x-minibatch adam-layer)]

(transfer! x-train cu-x-train)

(transfer! y-train cu-y-train)

classification: imdb sentiments 113

(time

(sgd-train adam cu-x-train cu-y-train

sigmoid-crossentropy-cost! 20 [])))))

"Elapsed time: 705.944645 msecs"

0.10233936458826065

Yes! This network, despite being quite small, with only two hidden
layers of 16 neuron each, runs an order of magnitude faster on this GPU!
The key to this speedup is that the first layer is large, so the weight
matrix in the first layer has 5,120,000 entries, which is not particularly
large, but is not small.

Tensors

Classification and metrics: MNIST handwritten digits
recognition

Tensors and ND-arrays

Tensor transformations

DNNL: Tensor operations on CPU

Tensor-based neural networks

cuDNN: Tensor operations on GPU

Convolutional networks

The convolution operation

Convolutional layers on the CPU with DNNL

Convolutional neural networks (CNN): Fashion-MNIST

CNN on the GPU with cuDNN

Appendix

Setting up the environment and the JVM

setting up the environment and the jvm 143

Many more early supporters helped me create this book. Thank you!
Vladimir Urosevic, Bill Vanyo, Nolan, Pei-Lan Hsu, Nick Bran-

daleone, Dorab Patel, Alex Lykostratis, Alan Thompson, Alister Lee,
Adam Tait, Matthew hoopes, Christian Meichsner, aaelony, David Pham,
Anders Murphy, Gurvesh Sanghera, Yiu Ming Huynh, Jacob Maine,
Brian Abbott, Paula Gearon, Andrei Ursan, Michael Alyn Miller,
Ragnar Dahlén, Nils Grunwald, atashi, Huahai Yang, Joel Wong,
James Davidson, Fjolne Yngling, Carin Meier, Al King, Scott Jap-
pinen, Ruud Reus, Brandon Adams, Kamil Toman, Henk Timmer-
mans, Oliver Holworthy, Ning Sun, Jeffrey Cummings, Ronen Narkis,
Timo Kauranen, Matthew Pettis, Daniel Lorencic, Anna S, , Hen-
rik Suzuki, Elpizo Choi, Edwin Park, Klaus Gutenbrunner, Pe-
ter McTaggart, DUANE SEARSMITH, Phill Wolf, Davide Del Vec-
chio, Arthur Ulfeldt, Robert J. Berger, Alex Nelson, William Swaney,
Joshua Done, Xavier Tapia, Don Jackson, Amar, Chris Blom, David M Wood-
head, James Tolton, Not Invader Zim, Jason Gilbertson, John A Finger-
hut, drew verlee, Christoph Ulrich, Ben Yorke, stask, Mandimby RAV-
ELOARINJAKA, Gijs Stuurman, Tracy Shields, Daniel Jolicoeur,
Andrei Zhurau, brian gorman, Stephen Stephens, Scott MacFarlane,
Alexander, Bernard Hugueney, Jacob Filimonov, Damian, Pixel Pie,
Haochen Xie, Alex, Bartosz Macięga, Mattias Arro, bahadir cambel,
Dan Dorman, Thomas Gebert, Joshua M, Łukasz Kożuchowski, ezazel,
Benjamin Loy, Jason Mulvenna, MR A BIN SALMAN, Leon Talbot, Ka-
muela Franco, Timothy Dean, James Conroy-Finn, Johann Böhme, ref-
set, Amresh Venugopal, E., Key Tiong Tan, Robert Crim, Jon Anthony,
Zack Teo, Martin, Leander, James Good, Rahul Nair, Agam Brahma,
Daniel Tan, Magnus, , John Doe, Fed Reggiardo, Snorre Magnus Davøen,
Venkatesh KS, Keith Mantell, Xceno Malloy, Jonathan Lin, Alex Doroshenko,
Hjalmar Ekengren, Tim Wiess, Mojave Matt, Alfred Thompson,
Randy Lien, Steven Harms, Brian Hurlow, Andy Mullenix, Marian,
Vijay Edwin, David Millett, Peder Refsnes, Felipe Gerard, Ken Rawl-
ings, Christian, Tim Johann, Adam Elga, Jason Thomas, Peter Denno,
Matt Burbidge, Dario, Brian Brunner, Ales Huzik, Glenn Jahnke, di-
dier, Aiken Drum, Szabolcs, Carsten Behring, Martin, Pauli Ojala,
Brian Hurlow, Rohit Thadani, Soumya Chatterjee, Sam Heaton,
Otis Clark, Martin Jung, sun, Paul Bellamy, Daniel Carleton, Steve Mayer,
Away From People, Valerii Praid, Csaba Endre Simon, Martin van Amers-
foorth, omnidelic, Andrew Baxter, Alex Shevchenko, Petter Egesund,
Adam Morgan, Ari Lerner, JWtoch, Bor Hodošček, Pavithra Solai Jawa-
har, Jonathan Smith, Christopher Hugh Graham, Pedro Cuenca,
Ram Tripathi, pkvov, Kaz Librowski, Matt Hodgson, Tom Brooke,
Jules White, max, Chad Harris, Rangel Spasov, Juan Ruiz, Tim Chase,
313 Ventures, Andrei Duhnea, Jason, Ned Twigg, Pedro Gomes,
Hari Krishnan, Daniel Lee, Jon Irving, Nicholas Stares, Anthony Ru-

144 deep learning for programmers [sample 1.0.0]

bin, Antti Rämö, ZAKH, Jason Waack, Jan van Esdonk, Mark Wat-
son, leo garcia, Jahyun Gu, Nenad Mitrovic, Tory S. Anderson, Fer-
nando Dobladez, Adolfo De Unanue, Mogens Brødsgaard Lund,
Matus Lestan, Daniel Wood, Sooheon, tattarattat, Mike Coleman,
TAKESHI NAKANO, Stephen Telford, Manas Marthi, Dmitry, Mikhail Sakhnov,
Erik Olivier.

	I Getting started
	Introduction
	What?
	How?
	Why?
	When?
	The Interactive Programming for Artificial Intelligence series
	Let's go

	II Inference
	Representing layers and connections
	Neural networks structure
	Approaching the implementation
	The math
	The code
	This is not much but is a good first step

	Bias and activation function
	Threshold and Bias
	Activation Function
	Layers with activations

	Fully connected inference layers
	The updated network diagram
	The Layer type
	Constructor function
	Activation functions
	Using the fully-connected function
	Multiple hidden layers
	Micro benchmark
	So far so good

	Increasing performance with batch processing
	Sharing memory
	GPU computing with CUDA and OpenCL
	The inference layer type
	Generalize the code
	This particular network
	CUDA on an Nvidia GPU
	OpenCL on an AMD GPU
	We can even mix CUDA and OpenCL
	Micro benchmark

	III Learning
	Gradient descent and backpropagation
	The forward pass
	The activation and its derivative
	The backward pass

	IV A simple neural networks API
	Inference API
	Training API
	Initializing weights
	Regression: learning a known function
	Neural networks approximate functions
	Generating artificial data
	Learning to approximate
	Regression requires linear output
	GPU
	Smaller is often better
	The first milestone

	V Training optimizations
	Weight decay
	Momentum and Nesterov momentum
	Adaptive learning rates
	Regression: Boston housing prices
	Dropout
	Stochastic gradient descent
	Classification: IMDB sentiments
	The IMDB sentiments dataset
	Figuring out how to teach NNs with the IMDB dataset
	Implementing one-hot encoding for the IMDB dataset
	Training the network
	Cross-entropy cost function
	Training the network (again)
	Doing it on the GPU

	VI Tensors
	Classification and metrics: MNIST handwritten digits recognition
	Tensors and ND-arrays
	Tensor transformations
	DNNL: Tensor operations on CPU
	Tensor-based neural networks
	cuDNN: Tensor operations on GPU

	VII Convolutional networks
	The convolution operation
	Convolutional layers on the CPU with DNNL
	Convolutional neural networks (CNN): Fashion-MNIST
	CNN on the GPU with cuDNN

	VIII Appendix
	Setting up the environment and the JVM

